refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14980 results
Sort by

Filters

Technology

Platform

accession-icon GSE15401
Expression data from mouse aorta during and following transient hyperglycaemia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Immediate and early effects of transient hyperglycaemia were examined using fully- reversible transgenic diabetic mice. Transient hyperglycaemia altered expression of 769 arterial genes, of which 200 did not reverse following recovery from hyperglycaemia. Many such genes are known to promote atherogenesis, including several implicated in arterial calcification and inflammation. This supports the view that hyperglycaemia causes not only very early deleterious changes in arterial gene expression but that to a large extent these persist for some time after restoration of normal blood glucose levels in vivo. Together, results support the contention that avoiding excess CVD risk in diabetes requires very early correction of hyperglycaemia.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE74410
Prdm1
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74409
Molecular function of Prdm1/Blimp1 in trophoblast giant cell differentiation.
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Expression profiling of wild-type and Prdm1 null mouse trophoblast giant cell cultures using Illumina whole genome mouse V2 arrays.

Publication Title

Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37936
Context-dependent actions of Exendin-4 on -cell function and dynamic changes in islet gene expression over time in vivo
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

GLP-1 analogues, such as exendin-4, preserve functional -cell mass in various model systems and are revolutionising management of type 2 diabetes. Yet, comparatively little is known about effectiveness in the face of severe -cell depletion. Moreover, direct and sequential effects of exendin-4 on islet-specific gene expression over time in vivo are not well characterised. To address these issues and others, we have examined the time-dependent effects of exendin-4 treatment on -cell mass regulation alongside accompanying changes in islet gene expression in vivo. Context-dependent actions were assessed by comparing effects on normal islets and also following massive toxigenetic -cell ablation in pIns-MYCERTAM transgenic mice in vivo. Despite over 90% loss of -cell mass, exendin-4 treatment normalised blood glucose and insulin levels in hyperglycaemic mice, though benefits rapidly waned on withdrawal of treatment. As exendin-4 did not arrest the decline in -cell mass or turnover in this study, we could directly isolate effects on function of surviving -cells. Improved glucose homeostasis was associated with dynamic changes in multiple islet genes and pathways in vivo favouring glucose-stimulated insulin secretion, such as Irs2, Pdx1, Sox4, glucokinase, and glycolysis pathway. Several key growth pathways and epigenetic regulators were also differentially expressed. Thus, even in the face of extensive -cell loss exendin-4 can markedly improve hyperglycaemia by differential gene expression in surviving islet cells.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE97145
Analysis of the differences in gene expression between wild type and Gpr120 knockout brown adipose tissue
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The goals were to investigate differences in gene expression between wild type and Gpr120 knockout mouse interscapular brown adipose tissue

Publication Title

The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE73072
Host gene expression signatures of H1N1, H3N2, HRV, RSV virus infection in adults
  • organism-icon Homo sapiens
  • sample-icon 2886 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Consider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference, this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This study develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large-scale serially sampled respiratory virus challenge study, we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample.

Publication Title

An individualized predictor of health and disease using paired reference and target samples.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE138914
Gene expression data from lymphoblastoid cell lines from African American participants in the GENOA study
  • organism-icon Homo sapiens
  • sample-icon 711 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

African-American individuals of the GENOA cohort

Publication Title

Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18927
University of Washington Human Reference Epigenome Mapping Project
  • organism-icon Homo sapiens
  • sample-icon 97 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The NIH Roadmap Epigenomics Mapping Consortium aims to produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.

Publication Title

The NIH Roadmap Epigenomics Mapping Consortium.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE30211
Gene expression changes during Type 1 diabetes pathogenesis
  • organism-icon Homo sapiens
  • sample-icon 724 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip, Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE45642
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder [control set]
  • organism-icon Homo sapiens
  • sample-icon 667 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A cardinal symptom of Major Depressive Disorder (MDD) is the disruption of circadian patterns. Yet, to date, there is no direct evidence of circadian clock dysregulation in the brains of MDD patients. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain was difficult to characterize. Here we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-hour cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ('Controls') and 34 MDD patients. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (AnCg), hippocampus (HC), amygdala (AMY), nucleus accumbens (NAcc) and cerebellum (CB). Several hundred transcripts in each region showed 24-hour cyclic patterns in Controls, and >100 transcripts exhibited consistent rhythmicity and phase-synchrony across regions. Among the top ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERB), DBP, BHLHE40(DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in MDD brains, due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This is the first transcriptome-wide analysis of cyclic patterns in the human brain and demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggest novel molecular targets for treatment of mood disorders.

Publication Title

Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact