refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 17505 results
Sort by

Filters

Technology

Platform

accession-icon GSE36818
GY118F downstream targets in iPSCs and EpiSCs
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE36817
GY118F downstream effect in EpiSCs
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This microarray was performed to gain insight in the effect of GY118F stimulation in EpiSCs. This array is part of the following paper to be published in Nature Communications: JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of nave pluripotency by Anouk L. van Oosten, Yael Costa, Austin Smith & Jos C.R. Silva

Publication Title

JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE36816
GY118F downstream targets in iPS cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This microarray was performed to gain insight in the downstream targets of GY118F in iPS cells. This array is part of the following paper to be published in Nature Communications: JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of nave pluripotency by Anouk L. van Oosten, Yael Costa, Austin Smith & Jos C.R. Silva

Publication Title

JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE32715
Global gene expression analysis in murine iPS cells derived with Nanog orthologs
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32464
Global gene expression analysis in murine iPS cells derived with mouse and human Nanog orthologs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with mouse (m) Nanog and human (h) Nanog. Global gene expression in resulting iPS cells was compared to embryonic stem (ES) cells and nanog null NS cells.

Publication Title

Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32650
Global gene expression analysis in murine iPS cells derived with mouse, chick and zebrafish Nanog orthologs
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with chick (c) and zebrafish (z) Nanog orthologs. Global gene expression was compared to iPS cells derived with mouse (m) Nanog.

Publication Title

Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP170102
Homo sapiens Genome sequencing
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Breast cancer (BRC) is the most invasive cancer in women. Although the survival rate of BRC is gradually increasing due to improved screening systems, development of novel therapeutic targets for inhibition of BRC proliferation, metastasis and recurrence have been constantly needed. Thus, in this study, we identified overexpression of SETDB1, a histone methyltransferase, in RNA-seq data of BRC derived from TCGA portal. In Gene Ontology (GO) analysis, cell migration-related GO terms were enriched, and we confirmed down-regulation of cell migration/invasion and alteration of EMT /MET markers after knockdown of SETDB1. Moreover, gene network analysis showed that SMAD7 expression is regulated by SETDB1 levels, indicating that up-regulation of SMAD7 by SETDB1 knockdown inhibited BRC metastasis. Therefore, development of SETDB1 inhibitors and functional studies may help develop more effective clinical guidelines for BRC treatment

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon GSE28367
Expression and SNP data from fibroblasts, iPSCs and neurons with four copies of SNCA, and equivalent cell lines from an unaffected first degree relative
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28365
Expression data from fibroblasts, iPSCs and neurons with four copies of SNCA, and equivalent cell lines from an unaffected first degree relative
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

A major barrier to research on Parkinsons disease (PD) is inaccessibility of diseased tissue for study. One solution is to derive induced pluripotent stem cells (iPSCs) from patients with PD and differentiate them into neurons affected by disease. We created an iPSC model of PD caused by triplication of SNCA encoding -synuclein. -Synuclein dysfunction is common to all forms of PD, and SNCA triplication leads to fully penetrant familial PD with accelerated pathogenesis. After differentiation of iPSCs into neurons enriched for midbrain dopaminergic subtypes, those from the patient contain double -synuclein protein compared to those from an unaffected relative, precisely recapitulating the cause of PD in these individuals. A measurable biomarker makes this model ideal for drug screening for compounds that reduce levels of -synuclein, and for mechanistic experiments to study PD pathogenesis.

Publication Title

Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32199
BMP and Activin treatment of mouse extraembryonic endoderm (XEN) cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

XEN cells are derived from the primitive endoderm of mouse blastocysts. In culture and in chimeras they exhibit properties of parietal endoderm. However, BMP signaling promotes XEN cells to form an epithelium and differentiate into visceral endoderm (VE). Of the several different subtypes of VE described, BMP induces a subtype that is most similar to the VE adjacent to the trophoblast-derived extraembryonic ectoderm.

Publication Title

BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact