refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 205 results
Sort by

Filters

Technology

Platform

accession-icon GSE64334
PW1/Peg3 expression regulates the key properties that determine mesoangioblast stem cell competence
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mesoangioblasts are vessel-associated progenitor cells that show therapeutic promise for the treatment of muscular dystrophy. Mesoangioblasts have the ability to undergo skeletal muscle differentiation and cross the blood vessel wall regardless of the developmental stage at which they are isolated. Here we show that PW1/Peg3 is expressed at high levels in mesoangioblasts obtained from mouse, dog and human tissues and its level of expression correlates with their myogenic competence. Silencing PW1/Peg3 markedly inhibits myogenic potential of mesoangioblasts in vitro through MyoD degradation. Moreover, lack of PW1/Peg3 abrogates mesoangioblast ability to cross the vessel wall and to engraft into damaged myofibers through the modulation of the junctional adhesion molecule-A. We conclude that PW1/Peg3 function is essential for conferring proper mesoangioblast competence and that the determination of PW1/Peg3 levels in human mesoangioblasts may serve as a biomarker to identify the best donor populations for therapeutic application in muscular dystrophies.

Publication Title

PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE69267
Expression data from rat organotypic hippocampal slices lentivirally infected with shRNF10 or scramble construct
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

RNF10 is a synapse-to-nucleus protein messsenger regulating NMDAR-dependent gene trascription. We have charaterized the impact of the absence of RNF10 on structural synaptic plasticity.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65754
Expression data from 10 months old sciatic nerves of Sterol regulatory element binding factor 1c (SREBF-1c) KO mice and relative littermates
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

SREBF-1c is a transcription factor regulating fatty acid biosynthesis. We have charaterized the impact of the abcence of SREBF-1c on the development of peripheral neuropathy

Publication Title

Lack of sterol regulatory element binding factor-1c imposes glial Fatty Acid utilization leading to peripheral neuropathy.

Sample Metadata Fields

Age

View Samples
accession-icon GSE87865
AKR1C enzymes sustain therapy resistance in pediatric T-ALL
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Although intensification of chemotherapy approaches considerably increased the outcome of pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) patients, a subgroup of them still experience treatment failure and relapse. In this context, we hypothesized that the Nrf2 signalling and its downstream effectors could be involved in sustain therapy resistance in T-ALL, as previously reported in other cancers. Indeed, in this study we identified the Aldo-Keto Reductase (AKR) enzymes AKR1C1-3, as over-expressed in T-ALL samples from therapy-resistant patients, demonstrating their fundamental role in the control of the response to vincristine (VCR) treatment. In particular, we evidence that the modulation of AKR1C1-3 gene expression and activity is sufficient to strongly affect the sensitivity of T-ALL cell lines and primary cells to VCR treatment, but not to daunorubicin, cytarabine or L-asparaginase. Moreover, we found a correlation between the degree of VCR response and the amount of AKR1Cs expression in patient-derived T-ALL xenografts. Interestingly, we show that daunorubicin and cytarabine are able to induce the over-activation of AKR1C enzymes, thus establishing a potential resistance loop generated by the combination of these drugs during T-ALL treatment.

Publication Title

AKR1C enzymes sustain therapy resistance in paediatric T-ALL.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE71935
Gene expression profiling in 38 JMML patients and 9 healthy donors (Validation cohort)
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Juvenile myelomonocytic leukemia (JMML) is a very rare and aggressive stem cell disease that mainly occurs in young children. RAS activation constitutes the core component of oncogenic signaling. In addition, the leukemic blasts of a quarter of JMML patients present with monosomy 7 (-7), whereas more than half of the patients show enhanced age-adjusted fetal hemoglobin (HbF) levels. Hematopoietic stem cell transplantation is the current standard of care. This results in an event-free survival of 50 - 60%, indicating that novel molecular driven therapeutic options are urgently needed. Using gene expression profiling in an extensive series of 82 patient samples, we aimed at understanding the molecular biology behind JMML and identified a previously unrecognized molecular subgroup characterized by high LIN28B expression.

Publication Title

LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE78513
NPM-ALK expression levels identify two distinct signatures in Anaplastic Large Cell Lymphoma of Childhood
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Anaplastic large-cell lymphoma (ALCL) makes up approximately 15% of paediatric non-Hodgkin's lymphomas of childhood. The vast majority of them is associated with the t(2;5)(p23;q35) translocation that results in the expression of a hybrid oncogenic tyrosine kinase, NPM-ALK. In order to investigate ALCL biological characteristics we used transcriptional profiling approach. Genome-wide gene expression profiling, performed on 23 paediatric ALCL and 12 reactive lymph nodes specimens, showed two novel ALCL subgroups based on their NPM-ALK expression levels (named (ALK low and ALK high). Gene set enrichment analysis revealed, in ALK low samples, a positive enrichment of genes involved in the Interleukin signaling pathway, whereas we found increased expression of genes related to cell cycle progression and division in ALK high tumour samples, such as Aurora Kinase A (AURKA) and B (AURKB). Growth inhibition was observed upon administration of AURKA and AURKB inhibitors Alisertib and Barasertib and it was associated with perturbation of the cell cycle and induction of apoptosis. In conclusion we identified two novel ALCL subgroups, which display unique biological characteristics suggesting sensitivity to distinct targeted therapies.

Publication Title

NPM-ALK expression levels identify two distinct subtypes of paediatric anaplastic large cell lymphoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72623
CRLF2 Over-expression is a Poor Prognostic Marker in Children With High Risk T-Cell Acute Lymphoblastic Leukemia
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Seventeen T-ALL patients out of 120 (14.2%) presented CRLF2 expression 5 times higher than the median (CRLF2-high) with a significantly inferior 5-y EFS and an increased CIR compared to CRLF2-low patients.GEP of 15 T-ALL patients with (CRLF2-high) were compared to 15 CRLF2-low patients. GSEA identified cell cycle deregulating gene sets.

Publication Title

CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE29326
Gene expression profiling of pediatric myelodysplastic syndrome (MDS) characterizes disease subtype and time to progression into acute myeloid leukemia (AML)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of relevant subgroups in childhood MDS patients by gene expression analysis and gene involve in progression into AML

Publication Title

Gene expression signatures of pediatric myelodysplastic syndromes are associated with risk of evolution into acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE26701
Expression data from post mortem porcine skeletal muscle
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

We set up a pilot study using Affymetrix Gene Chip Porcine Genome Arrays to evaluate the impact of time lags from death on gene expression profiling of porcine skeletal muscle at four post mortem time points (up to 24 hrs) during the routine processing of fresh tights

Publication Title

Microarray gene expression analysis of porcine skeletal muscle sampled at several post mortem time points.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE78718
Expression Profiling of Extracellular Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Circulating microvesicles (MVs) have been described as important players in cell-to-cell communication carrying biological information both in normal and pathologic condition. MVs released by cancer cells may incorporate biomolecules such as active lipids, proteins and RNA, which can be delivered and internalized by recipient cells potentially altering gene expression of receiving cells eventually impacting disease progression. In this study, we took advantage of a leukemia in vitro model to investigate MVs as vehicles of protein coding messages. Leukemic cell lines (K562, REH and SHI-1) carrying recurrent translocations were analyzed. In the leukemic cells these translocations are transcribed into oncogenic fusion transcripts. Here, using gene expression microarrays we monitored leukemic fusion transcripts as hallmarks of leukemic cells transcriptome to track mRNA transfer from parental cells to MVs. Transcriptome analysis of K562 cells and released MVs disclosed MVs as not just small scale cells. In fact, a number of transcripts related to membrane activity, cell surface receptors and extracellular communication were enriched in the MVs pool. On the other hand, sets of transcripts related to the basal cellular functions and transcripts of the BCR-ABL oncogenic pathway downstream of the fusion protein were detected in MVs as well as in parental K562 cells. Moreover, through co-culture analyses uptake of leukemic MVs in receiving cells was confirmed and an MV-dosage dependent increase of target cell proliferation was demonstrated.

Publication Title

Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact