refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 411 results
Sort by

Filters

Technology

Platform

accession-icon GSE22596
Time course of the transcriptional response of three porcine intestinal sections to Salmonella typhimurium infection
  • organism-icon Sus scrofa
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The GeneChip Porcine Genome Array was used to identify the transcriptional response upon Salmonella typhimurium infection in three porcine intestinal sections (jejumun, ileum and colon) along a time course of 1,2 and 6 days post infection.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE23063
Global transcriptional response of porcine intestinal epithelial cell lines to Salmonella enterica serovar Typhimurium and Choleraesuis
  • organism-icon Sus scrofa
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23060
Global transcriptional response of porcine intestinal epithelial cell lines to Salmonella enterica serovar Typhimurium and Choleraesuis: IPI-2I infected with S. choleraesuis
  • organism-icon Sus scrofa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23059
Global transcriptional response of porcine intestinal epithelial cell lines to Salmonella enterica serovar Typhimurium and Choleraesuis: IPEC-J2 infected with S. typhimurium
  • organism-icon Sus scrofa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23057
Global transcriptional response of porcine intestinal epithelial cell lines to Salmonella enterica serovar Typhimurium and Choleraesuis: IPEC-J2 infected with S. choleraesuis
  • organism-icon Sus scrofa
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE23062
Global transcriptional response of porcine intestinal epithelial cell lines to Salmonella enterica serovar Typhimurium and Choleraesuis: IPI-2I infected with S. typhimurium
  • organism-icon Sus scrofa
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The GeneChip Porcine Genome Array was used to identify the transcriptional response upon either Salmonella typhimurium (ST) or Salmonella choleraesuis (SC) infection in two porcine epithelial cell lines (IPEC-J2, from jejunum and IPI-2I, from ileum) during 2 and 4 hours post infection.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE96955
Lysine 100 acetylation effect of CRP (catabolite activator protein) in gene expression in Escherichia coli
  • organism-icon Escherichia coli k-12
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

cAMP receptor protein (CRP, also known as the catabolite activator protein [CAP]) is arguably the best-studied of the global transcription factors of E coli. CRP alone is responsible for regulating at least 283 operons. Upon binding cAMP, the CRP dimer binds DNA and directly interacts with RNA polymerase (RNAP). At Class II promoters, CRP binds near position -41,5 relative to the transcription start site and contacts the amino-terminal domain of the RNAP subunit (RNAP-NTD). This interaction requires AR2, a patch of primarily positively charged residues (H19, H21, E96, and K101) that interact with negatively charged residues on RNAP-NTD. Acetylome analyses consistently detect lysine 100 (K100) of CRP as acetylated. Since K100 is adjacent to the positively charged AR2, we hypothesized that the K100 positive charge may also play a role in CRP function. We further hypothesized that acetylation of K100 would neutralize this positive charge, leading to a potential regulatory mechanism

Publication Title

Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of <i>Escherichia coli</i>: Assessment by an Optimized Factorial Microarray Analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47176
Candidate transcriptomic sources of inbreeding depression in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The genomic causes of inbreeding depression are poorly known. Several studies have found widespread transcriptomic alterations in inbred organisms, but it remains unclear which of these alterations are causes of the depression and which are mere responses to the ensuing physiological stress.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68169
Expression data from mouse brain
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

A detailed knowledge of the mechanisms underlying brain aging is fundamental to understand its functional decline and the baseline upon which brain pathologies superimpose. Endogenous protective mechanisms must contribute to the adaptability and plasticity still present in the healthy aged brain. Apolipoprotein D (ApoD) is one of the few genes with a consistent and evolutionarily conserved up-regulation in the aged brain. ApoD protecting roles upon stress or injury are well known, but a study of the effects of ApoD expression in the normal aging process is still missing. Using an ApoD-knockout mouse we analyze the effects of ApoD on factors contributing to the functional maintenance of the aged brain. We focused our cellular and molecular analyses in cortex and hippocampus at an age representing the onset of senescence where mortality risks are below 25%, avoiding bias towards long-lived animals. Lack of ApoD causes a prematurely aged brain without altering lifespan. Age-dependent hyperkinesia and memory deficits are accompanied by differential molecular effects in cortex and hippocampus. Transcriptome analyses reveal distinct effects of ApoD loss on the molecular age-dependent patterns of cortex and hippocampus, with different cell-type contributions to age-regulated gene expression. Markers of glial reactivity, proteostasis, and oxidative and inflammatory damage reveal early signs of aging and enhanced brain deterioration in the ApoD-knockout brain. The lack of ApoD results in an age-enhanced significant reduction in neuronal calcium-dependent functionality markers and signs of early reduction of neuronal numbers in the cortex, thus impinging upon parameters clearly differentiating neurodegenerative conditions from healthy brain aging. Our data support the hypothesis that the physiological increased brain expression of ApoD represents a homeostatic anti-aging mechanism.

Publication Title

Aging without Apolipoprotein D: Molecular and cellular modifications in the hippocampus and cortex.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE139871
Infection of monocytes from tuberculosis patients with two virulent clinical isolates of Mycobacterium tuberculosis induces alterations in myeloid effector functions.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung where they participate in the contention of infection. Alternatively, inflammatory monocytes may help in prolonging inflammation or serve as niches for Mtb infection. Also, monocyte response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, using microarrays we have examined the global mRNA profiles of circulating human monocytes from healthy individuals and patients with active tuberculosis (TB).

Publication Title

Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of <i>Mycobacterium tuberculosis</i> Induces Alterations in Myeloid Effector Functions.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact