refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE57802
Transcriptome Profiling of patients with 16p11.2 rearrangements
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

The 600kb BP4-BP5 16p11.2 CNV (copy number variant) is associated with neuroanatomical, neurocognitive and metabolic disorders. These recurrent rearrangements are associated with reciprocal phenotypes such as obesity and underweight, macro- and microcephaly, as well as autism spectrum disorder (ASD) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal CNVs in 16p11.2.

Publication Title

A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE35790
Kinetic RNA polymerase II occupancy, associated histone marks, and mRNA accumulation reveal transcriptional and post-transcriptional mechanisms underlying circadian gene expression
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE35789
Transcription profiling of mouse liver cells during the circadian cycle at 4 hour time resolution
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Cyclic regulatory systems are ubiquitous in cells and tissues. In the liver rhythms in mRNA expression are determined by the homeostatic regulation that operates on daily circumstances. In particular the specific response to nutrients, as well as systemic and peripheral circadian oscillators, contribute to the set up of the hepatic homeostasis at different phases of the day. In this series we used microarrays to detail the global program of gene expression in the mouse liver under physiological daily variations, determined by both the feeding and the circadian cycles.

Publication Title

Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34559
Tie-2 expressing monocytes (TEM) expression data
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

TEM differentiated in vitro were exposed to treatments increasing or decreasing their proangiogenic activity. We used microarrays to identify the genes differentially expressed among the treatments and associated to changes in TEM proangiogenic and protumoral functions.

Publication Title

TIE-2 and VEGFR kinase activities drive immunosuppressive function of TIE-2-expressing monocytes in human breast tumors.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact