refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 18316 results
Sort by

Filters

Technology

Platform

accession-icon GSE56921
Expression analysis of common myeloid progenitors (CMPs) expressing Hes1
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

High levels of Hes1 expression are frequently found in BCR-ABL-positive chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BClike disease; however the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-kB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of Hes1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, these CMPs secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BClike disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.

Publication Title

Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36897
Expression data from mouse neural cells and tumors
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neural stem cells (NSCs) are considered to be the cell-of-origin of brain tumor stem cells. To identify the genetic pathways responsible for the transformation of normal NSCs to brain-tumor-initiating cells, we used Sleeping Beauty (SB) transposons, to mutagenize NSCs. Mobilized SB transposons induced the immortalization of NSCs. Immortalized NSCs induced tumors upon subcutaneous transplantation in immunocompromized mice. To further classify the immortalized cells and mouse tumors, we performed Gene Set Enrichment Analysis (GSEA) using DNA microarray data.

Publication Title

Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57636
Gene expression profiling of mouse small intestinal myofibroblast after stimulation with homogenate of intestinal eosinophil
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

GeneChip Mouse Gene 2.0 ST Array was used to comprehensively investigate the changes of gene expression of small intestinal myofibroblasts of mice after stimulation with homogenates of intestinal eosinophils in vitro.

Publication Title

Eosinophil depletion suppresses radiation-induced small intestinal fibrosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46511
Expression data of NIH3T3 in G0 and G1 phases
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

NIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase

Publication Title

A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE47684
Recurrent mutations of multiple components of cohesin complex in myeloid neoplasms
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE31789
DNA methylation epigenotype expanding to non-polycomb target genes, induced by Epstein-Barr virus infection in human gastric cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE28702
CRC samples for FOLFOX therapy prediction
  • organism-icon Homo sapiens
  • sample-icon 82 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of this study is to identify responders to FOLFOX therapy by applying the Random Forests (RF) algorithm to gene expression data. Eighty-three unresectable colorectal cancer (CRC) patients including 42 responders and 41 non-responders were divided into training (54 patients) and test (29 patients) sets.

Publication Title

Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE99316
Gene repression and ChIP-seq in Human Small Cell Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43346
Gene repression with H3K27me3 modification in human small cell lung cancer
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Small cell lung cancer (SCLC) is a subtype of lung cancer with poor prognosis due to early dissemination and rapid growth. We here analyze gene expression profile of 23 clinical SCLC samples. EZH2 was found to be highly expressed in SCLC samples compared to 42 normal tissues including the normal lung, and other PRC2 members, SUZ12 and EED, were also highly expressed in SCLC. To obtain target genes of PRC2 in SCLC, H3K27me3 mark was mapped in three SCLC cell lines, Lu130, H209 and DMS53, and compared to normal small airway epithelial cells (SAEC). Whereas H3K27me3(+) genes in SAEC were significantly overlapped with PRC-target genes in ES cells (P=1.7x10-31), genes with H3K27me3 in SCLC cell lines but not in SAEC were not significantly overlapped with PRC-target genes in ES cells (P=0.64). These genes with H3K27me3 specifically in SCLC cell lines but not in SAEC showed decreased expression, not only in SCLC cell lines but also in clinical SCLCs, and showed enrichment of GO-terms such as plasma membrane (P=8.1x10-21) and cell adhesion (P=1.7x10-8). Introduction of JUB, a gene showing specific H3K27me3 modification and the strongest repression in the three SCLC cell lines, resulted in repression of cellular growth in DMS53. In clinical SCLC cases, lower JUB level correlated to shorter survival (P=0.002), or a set of PRC target genes (JUB, EPHB4) and marker genes of classic type SCLC (GRP, ASCL1) correlated to shorter survival (P=0.0001) and classified SCLC into two groups with distinct prognosis. Growth of SCLC cell lines was repressed when treated with 3-Deazaneplanocin A, an inhibitor against PRC2. It is suggested that high expression of PRC2 in SCLC contributed to repression of genes including non-PRC-target genes in ES cells, and that the gene repression may play a role in genesis of SCLC.

Publication Title

PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE32082
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact