refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE14788
Genome-Wide Analysis Revealed the Complex Regulatory Network of Brassinosteroid Effects in Photomorphogenesis
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Light and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development, however, the mechanism of how they synergistically function is still largely unknown. To explore the underlying mechanisms in photomorphogenesis, genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in presence of light stimuli, or exogenous Brassinolide (BL). Results showed that BR deficiency stimulates, while BL treatment suppresses, the expressions of light responsive genes and photomorphogenesis, revealing the negative effects of BR in photomorphogenesis. This is consistent with that genes involved in cell wall modification and cellular metabolism were specifically modulated by BL during dark-light transition, and altered expressions of genes related to energy utilization. Further analysis revealed that hormone biosynthesis and signaling related genes, especially those of auxin, were altered under BL treatment or light stimuli, indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones. Additionally, suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light, hormone and protein degradation. The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway, which will help to elucidate the molecular mechanism of plant photomorphogenesis.

Publication Title

Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis.

Sample Metadata Fields

Age, Treatment

View Samples
accession-icon GSE24977
Rice Hybrid Weakness is Caused mainly by the Enhanced Stress-Response
  • organism-icon Oryza sativa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Hybrid weakness is a type of reproductive barrier found in many plant species and is important to plant evolution. Compared with heterosis, hybrid weakness has received less attention in evolutionary genetics studies. In rice, the hybrid weakness of the F1 progenies between the Jamaica- and temperate Japonica-types has been intensively genetically surveyed, and it has been found to be controlled by two complementary genes, Hwc1 and Hwc2. The defective development of the hybrid F1 seedlings was found to be mainly due to abnormal root growth, resulting in non-continuous growth and the eventual lethality of the plants. Detailed genome-wide analyses using the hybrid F1 plant and parents showed that, in contrast to heterosis, in which photosynthesis- and starch metabolism-related genes are preferentially expressed, the abscisic acid (ABA)-response and abiotic-/biotic- and defense-related genes were significantly up-regulated in the roots of the hybrid F1, resulting in suppressed growth of the whole plant. This indicates that the mechanisms of heterosis and hybrid weakness differ and provides informative clues to facilitate the understanding of the mechanisms controlling the reproductive isolation and hybrid weakness.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE16640
Expression analysis of genes in the lamina joint of lc1 mutant compared with that of wild-type
  • organism-icon Oryza sativa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

The angle of rice leaf inclination is an important agronomic trait and closely related to the yield and architecture of crops. Through genetic screening, a rice gain-of-function mutant leaf inclination1, lc1, was identified . Phenotypic analysis confirmed the exaggerated leaf angels of lc1 due to the stimulated cell elongation at the collar.In this series, we compare the transcriptome of zhonghua11 and lc1 collar.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact