refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12292 results
Sort by

Filters

Technology

Platform

accession-icon GSE22898
Deep Sequencing of the Small RNA Transcriptome of Normal and Malignant Human B cells Identifies Hundreds of Novel MicroRNAs
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE43606
Genetic Heterogeneity of DLBCL
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-B (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.

Publication Title

Genetic heterogeneity of diffuse large B-cell lymphoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE10053
Gene expression index for olfactory behavior in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Transcriptional analysis for GEI in olfactory behavior

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34897
Gene expression from Inducible TOC1 expression in Arabidopsis seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between TOC1 and CCA1/LHY. CCA1 and LHY are MYB transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data supports that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the Pseudoreceiver (PR) domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify new potential TOC1 targets and output pathways. Together these results define the biochemical action of the core clock protein TOC1 and refine our perspective on how plant clocks function.

Publication Title

Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5404
Expression data from Drosophila subjected to artificial selection on aggression
  • organism-icon Drosophila melanogaster
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Genes relevant to manifestion of and variation in aggression behavior might be differentially expressed in lines selected for divergent levels of aggression.

Publication Title

Quantitative genomics of aggressive behavior in Drosophila melanogaster.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10670
Global expression profiling of wild type and transgenic Arabidopsis plants in response to water stress
  • organism-icon Arabidopsis thaliana
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Transgenic Arabidopsis plants with constitutively low inositol (1,4,5) triphosphate exhibit an increased tolerance to water stress by an ABA-independent pathway

Publication Title

Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48435
The genetic landscape of mutations in Burkitt lymphoma
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.

Publication Title

Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE7432
Ethylene and auxin interactions in the roots of Arabidopsis seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Understanding how developmental and environmental signals are integrated to produce specific responses is one of the main challenges of modern biology. Hormones and, most importantly, interactions between different hormones serve as crucial regulators of plant growth and development, playing central roles in the coordination of internal developmental processes with the environment. Herein, a combination of physiological, genetic, cellular, and whole-genome expression profiling approaches has been employed to investigate the mechanisms of interaction between two key plant hormones, ethylene and auxin.

Publication Title

Multilevel interactions between ethylene and auxin in Arabidopsis roots.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE75750
Expression data from Day 15 bovine conceptuses
  • organism-icon Bos taurus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

The majority of pregnancy loss in cattle occurs between days 8 and 16 of gestation coincident with the initiation of conceptus elongation and the onset of maternal recognition of pregnancy. Differences in conceptus lengths on the same day of gestation may be related to an inherent lack of developmental competency or may simply be a consequence of asynchrony with the maternal environment. The primary objective of this work was to characterize differential patterns of mRNA expression between short and long bovine conceptuses recovered on Day 15 of gestation.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Disease stage

View Samples
accession-icon GSE12845
B cell subsets from human tonsil and blood
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

B cells from human tonsil and blood were sorted using flow cytometry. The human samples were processed immediately ex-vivo using markers for known B cell subsets.

Publication Title

Analysis of somatic hypermutation in X-linked hyper-IgM syndrome shows specific deficiencies in mutational targeting.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact