refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 455 results
Sort by

Filters

Technology

Platform

accession-icon GSE28244
Expression profile of maizes stalk challenged with the corn borer Sesamia nonagrioides
  • organism-icon Zea mays
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Stalk borers are major pests for some of the most important crops in the world, such as maize or rice. Plant defense mechanisms against these herbivores have been poorly investigated. The maizes stalk responds to insect feeding activating defense genes including hormone biosynthetic-related or proteinase inhibitor transcripts. The most outstanding conclusion is that cells in the maizes stalk undergo cell wall fortification after corn borer tunneling.

Publication Title

Inducible maize defense mechanisms against the corn borer Sesamia nonagrioides: a transcriptome and biochemical approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41956
Transcriptome analysis of A661 leaves
  • organism-icon Zea mays
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

The maize inbred line A661 shows a characteristic phenotype when grown at suboptimal temperatures for three weeks and then is exposed to optimal temperatures for one extra week. After this period the third leaf showed two well defined sections: distal (chlorophyll-less; CL) and proximal (chlorophyll-containing; CC) sections. To further investigate the performance of the inbred line A661 under cold conditions a gene expression profiling analysis was conducted using large scale maize microarrays. A total of 1002 transcripts change their expression between both leaf sections and the majority of these codify for proteins located to the chloroplast.

Publication Title

Genetic regulation of cold-induced albinism in the maize inbred line A661.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33427
Genome-wide Response of Saccharomyces cerevisiae upon Arsenate Exposure
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Arsenic metalloid is a double-edge sword. On the one hand it is a very toxic and powerful carcinogen, and on the other it has been successfully used in the treatment of acute promyelocytic leukemia. In order to prevent the deleterious effects caused by arsenic compounds, almost all living organisms have developed mechanisms to eliminate it. In this study genome-wide response of S. cerevisiae to arsenic shows that this metal interferes with genes involved in the iron homeostasis including those encoding proteins that function in iron uptake, incorporation into FeS clusters, and more. In addition our data indicate that Yap1 transcriptionally controls the iron homeostasis regulator AFT2 as well as its direct target, MRS4. Most importantly in response to arsenate exposure Yap1 strongly regulates the expression of several genes involved in the Fe-S proteins biosynthesis, namely NBP35 and YFH1. Interestingly mRNA levels encoding Fet3, Ferro-O2-oxidoreductase required for high-affinity iron uptake, are drastically destabilized upon arsenic exposure. Such destabilization is due to the 5 to 3 exonuclease Xrn1 localized in the P Bodies. Moreover FET3 mRNA decay is not mediated by Cth2 and is independent on the formation of ROS responsible for the toxic effects of arsenic compounds. Strikingly, in presence of arsenate fet3 mutant shows resistance over the wild-type which leads us to suggest that Fet3 has a role in arsenic toxicity. Unexpectedly arsenic treatment seems to activate the non-reductive iron uptake in order to maintain the cellular iron homeostasis. Furthermore our genetic, biochemical, and physiological analysis demonstrate that aft1 mutant is sensitive to arsenic compounds and such phenotype is reversible upon addition of iron. We also show that arsenic exposure induces iron deficiency in aft1 mutant. In conclusion this work shows for the first time that arsenic, a chemotherapy drug used to treat a specific type of acute promyelocytic leukemia (APL), disrupts iron homeostasis and our results suggest that this disruption is independent on ROS generation. Finally we provide preliminary data confirming that such disruption also takes place in mammalian cells, an observation that can be very relevant in term of clinical applications.

Publication Title

Arsenic stress elicits cytosolic Ca(2+) bursts and Crz1 activation in Saccharomyces cerevisiae.

Sample Metadata Fields

Time

View Samples
accession-icon GSE13982
Effect of CORM-2 on E. coli transcriptome
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

We recently reported that carbon monoxide (CO) has bactericidal activity. To understand its mode of action we analysed the gene expression changes occurring when Escherichia coli, grown aerobically and anaerobically, is treated with the carbon monoxide releasing molecule, CORM-2. The E. coli microarray analysis shows that E. coli CORM-2 response is multifaceted with a high number of differentially regulated genes spread through several functional categories, namely genes involved in inorganic ion transport and metabolism, regulators, and genes implicated in posttranslational modification, such as chaperones. CORM-2 has higher impact in E. coli cells grown anaerobically, as judged by the existence of repressed genes belonging to eight functional classes which are absent in aerobically CORM-2 treated cells. In spite of the relatively stable nature of the CO molecule, our results show that CO is able to trigger a significant alteration in the transcriptome of E. coli which necessarily has effects in several key metabolic pathways.

Publication Title

Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68450
Embryonic sensory thalamus nuclei-specific genes revealed by genetic labelling and FACS isolation
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To identify genes expressed in specific developing thalamic nuclei during embryonic stages, a genetic dual labelling strategy was established to mark and isolate the cells. Transcription profiles were determined for the principal sensory thalamic populations by genome-wide analysis.

Publication Title

Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79683
Expression data from thalamic dLGN nucleus in control and Sema6A knock-out mice at P0
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Misguided visual thalamic axons leads to changes in gene expression in visual thalamic neurons.

Publication Title

Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44868
Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic targets, and histone acetylation and gene expression profiling of neural HDAC inhibition.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE44855
Genomic landscape of transcriptional and epigenetic dysregulation in a mouse model of early onset Huntington's disease
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE56703
Microarray and ChIP-chip analyses of the THSC/TREX-2 complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52046
Expression data from Col-0 and sp1,spx2 under phosphate starvation stress and recovery after resupplying phosphate
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We performed a transcriptomic analysis of Pi-starvation and recovery after resupplying Pi in Arabidopsis thaliana (Columbia-0) wild type plants and double mutant spx1,spx2. Results show that SPX1 is a Pi-dependent inhibitor of the transcription factor PHR1, a central regulatory protein in the control of transcriptional responses to Pi starvation.

Publication Title

SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact