refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 6198 results
Sort by

Filters

Technology

Platform

accession-icon GSE34980
RNase Y of Staphylococcus aureus and its role in the activation of virulence genes
  • organism-icon Staphylococcus aureus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

RNase Y of Bacillus subtilis is a key member of the degradosome and important for bulk mRNA turnover. In contrast to B. subtilis, the RNase Y homologue (rny/cvfA) of Staphylococcus aureus is not essential for growth. Here we found that RNase Y plays a major role in virulence gene regulation. Accordingly, rny deletion mutants demonstrated impaired virulence in a murine bacteraemia model. RNase Y is important for the processing and stabilisation of the immature transcript of the global virulence regulator system SaePQRS. Moreover, RNase Y is involved in the activation of virulence gene expression at the promoter level. This control is independent of both the virulence regulator agr and the saePQRS processing and may be mediated by small RNAs some of which were shown to be degraded by RNase Y. Besides this regulatory effect, mRNA levels of several operons were significantly increased in the rny mutant and the half-life of one of these operons was shown to be extremely extended. However, the half-life of many mRNA species was not significantly altered. Thus, RNase Y in S. aureus influences mRNA expression in a tightly controlled regulatory manner and is essential for coordinated activation of virulence genes.

Publication Title

RNase Y of Staphylococcus aureus and its role in the activation of virulence genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9735
B6_IL1218_WAP
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dataset of IL-12+IL-18 trated and Yersinia enterocolitica infected C57BL/6 NK cells

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE134282
The role of methyl-CpG-binding domain protein-2 (MBD2) in colonic inflammation
  • organism-icon Mus musculus
  • sample-icon 45 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Methyl-CpG-Binding Protein Mbd2 Regulates Susceptibility to Experimental Colitis via Control of CD11c<sup>+</sup> Cells and Colonic Epithelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE134280
The role of methyl-CpG-binding domain protein-2 (MBD2) in colonic inflammation [series 1]
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Mice deficient in MBD2 (Mbd2-/-) were treated with 2% dextran sulfate sodium or normal drinking water for 6 continuous days. A single cell suspension of colon lamina propria and epithelium was isolated, with monocytes (CD11b+ Ly6CHi, MHC-II+/-), macrophages (CD11b+ Ly6C-MHC-II+), cDC2s (CD11b- CD11c+ CD103+) and epithelial cells (CD45- EpCAM+) purified by FACS.

Publication Title

The Methyl-CpG-Binding Protein Mbd2 Regulates Susceptibility to Experimental Colitis via Control of CD11c<sup>+</sup> Cells and Colonic Epithelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62961
Investigating heterogeneity within T follicular helper cells (TFH) population.
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

T follicular helper cells (TFH) are heterogenic population of CD4+ T cells, expressing CXCR5+ and PD-1+ on their surface. Their role is linked to supporting formation of germinal centres (GC) and these cells are thought to express high levels of PD-1 marker. Two models of immunisation were used to investigate the role of PD-1 low TFH. In Salmonella enterica infection high frequency of T follicular helper cells expressing low levels of PD-1 surface molecule are observed within first week of infection but GC do not appear until much a later stage (week 7-8). Sheep red blood cell immunisation (SRBC) gives rise to both TFH and GC B cells within first week of response and these TFH express low to high level of PD-1 molecule.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE134281
The role of methyl-CpG-binding domain protein-2 (MBD2) in colonic inflammation [series 2]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Mice deficient in MBD2 (Mbd2-/-) were treated with 2% dextran sulfate sodium or normal drinking water for 6 continuous days. A single cell suspension of colon lamina propria and epithelium was isolated, with monocytes (CD11b+ Ly6CHi, MHC-II+/-), macrophages (CD11b+ Ly6C-MHC-II+), cDC2s (CD11b- CD11c+ CD103+) and epithelial cells (CD45- EpCAM+) purified by FACS.

Publication Title

The Methyl-CpG-Binding Protein Mbd2 Regulates Susceptibility to Experimental Colitis via Control of CD11c<sup>+</sup> Cells and Colonic Epithelium.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP095402
IFN-? induced modes regulated by histone deacetylases and protein tyrosine phosphatases in human choriocarcinoma cells.
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

In the current study, we investigated the collective roles of protein tyrosine phosphatases (PTPs) and histone deacetylases (HDACs) on regulation of IRG expression in human choriocarcinoma cells by genome-wide transcriptional profiling. Logic-rules were optimized to derive rules governing gene expression patterns observed upon different combinations of treatment with PTP and HDAC inhibitors. The data reveal that IRGs can be divided into distinct subsets that are differentially modulated by co-treatment of Jar cells with IFN-? and PTP versus HDAC inhibitors, respectively. Furthermore, promoter analysis of the genes governed by the rules identifies transcription factor binding sites associated with the different gene subsets. Thus, the regulatory modes identified in this study provide insights into the complex regulation of inflammatory pathways at the fetal-maternal interface, as well as mechanisms that choriocarcinoma cells may utilize to promote their survival.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon SRP145129
Homo sapiens isolate:iSLK219 Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Retinoic acid-inducible gene-I (RIG-I) is a cytosolic pathogen recognition receptor that initiates the innate immune response against many RNA viruses. RIG-I also has been shown to sense some DNA viruses, and host RNA polymerase III (RNA Pol III), a cytosolic DNA sensor, converts cytosolic AT-rich DNA into RNA to be sensed by RIG-I. We previously showed that the RIG-I restricts Kaposi Sarcoma-associated herpesvirus (KSHV) reactivation (J Virol. 2014 May;88(10):5778-87). In this study, we report that KSHV stimulates the RIG-I signaling pathway in an RNA Pol III-independent manner and subsequently induces type I IFN responses. Knockdown or inhibition of RNA Pol-III had no effect on IFN-ß induction by KSHV. By using CLIP (Cross-Linking and Immunoprecipitation) and RNA deep sequencing technologies, we identified multiple KSHV regions that give rise to RNA fragments binding to RIG-I, such as ORF810420-10496, ORF6411058-110675, Repeat region (LIR1)119059-119204, and ORF2543561-43650. The sequence dissimilarity between these fragments suggests that RIG-I detects a particular structure rather than a specific sequence motif. Synthesized ORF810420-10496 RNA stimulated RIG-I-dependent but RNA Pol III-independent IFN-ß signaling. In summary, some KSHV viral RNAs are sensed by RIG-I in an RNA Pol III-independent manner.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line, Treatment, Race

View Samples
accession-icon SRP099592
Influence of matrix metalloproteinase-9 deficiency on development of murine colitis.
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

No description.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon SRP127517
Role of SENP3 in Treg cell stability and function
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Fresh splenic Treg cells (CD4+CD25+YFP+) were isolated from 6-week-old Senp3+/+Foxp3-Cre and Senp3fl/flFoxp3-Cre mice and stimulated with anti-CD3 and anti-CD28 for 24 hours. Activated Treg cells were used for total RNA isolation with TRIzol and subjected to RNA-sequencing.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact