refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 55 results
Sort by

Filters

Technology

Platform

accession-icon GSE37548
Expresion profile of MEF reprogrammed with Yamanakas factor together with FoxA2 and Gata4
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In a pilot experiment to reprogramme MEF into endoderm, we infected MEF with the Yamanakas factors (O: Oct4, K: Klf4, S: Sox2, M:Myc), FoxA2 (F) and Gata4 (G). Global gene expression of isolated clones was performed.

Publication Title

Gata4 blocks somatic cell reprogramming by directly repressing Nanog.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51467
Expresion profile of TGR-1 (Myc+/+) and HO15.19 (Myc-/-) infected with a retrovirus expressing Hhex or GFP (controls)
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 2.0 ST Array (ragene20st)

Description

The aim of this experiment is to determine Hhex targets in the presence and absence of Myc.

Publication Title

Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE138376
Expression data from HepG2 cells transfected with the Vitamin D Receptor (VDR) and activated by Vitamin D (calcitriol)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

In the present study, we aimed to define the role of VDR in the overall lipid metabolism by transcriptomic and metabolomic analyses of human hepatocytes upon VDR activation by vitamin D (VitD)

Publication Title

The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE30451
Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE30447
Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (HepG2 data)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2, however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing HMGCS2 and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolism pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE30450
Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-regulated in Nonalcoholic Fatty Liver (hepatocytes data)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2, however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing HMGCS2 and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolism pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42955
Expression data from human heart
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression is altered in heart failure. This syndrome can be caused by cardiovascular diseases, including dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), hypertrophic cardiomyopathy, viral or toxic myocarditis, hypertension, and valvular diseases.

Publication Title

Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE54522
Influence of olive pollen stimuli on the gene- expression profile in healthy controls and allergic patients
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of gene-expression profiles with microarrays can be very useful to dissect specific responses and to characterize with a global view, new elements for improving the diagnosis, treatment and understanding of allergic diseases. We have used this approach for studying the olive pollen response, taking advantage our previous results of T-cell epitope mapping on Ole e 1 molecule (the major allergen from olive pollen) in order to analyze the stimuli influence on the gene-expression of olive pollen allergic patients. Peripheral blood mononuclear cells (PBMCs) from 6 healthy controls and 6 allergic subjects were stimulated 24 hours with olive pollen stimuli: Ole e 1 molecule and two Ole e 1 peptides previously defined as P2+3 (aa10-31), mainly recognized by non-allergic subjects (possible immunoregulatory epitope) and P10+12+13 (aa90-130), immunodominant T-cell epitope. RNA extracted from basal and stimulated PBMCs was analyzed by HuGeU133 plus 2.0 GeneChip, Affymetrix (38.500genes). After assessment of data quality by standard quality checks and principal components analysis (PCA), differential gene-expression by experimental conditions was performed by multiple testing, using microarrays specific software. Differences in functional analysis were performed by KEGG, for pathways and Gene-Ontology for biological process. The results of gene-expression by PCA showed differential clusters that correlated with the experimental conditions from samples of allergic patients. Analysis of differential gene-expression by multiple testing, and functional analysis by KEGG and Gene-Ontology revealed differential genes and pathways among the 4 experimental conditions.

Publication Title

Therapeutic targets for olive pollen allergy defined by gene markers modulated by Ole e 1-derived peptides.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE37157
GENE-EXPRESSION ANALYSIS RELATED TO OLIVE POLLEN ALLERGY
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of gene-expression profiles by microarrays can be very useful to characterize new potential candidate genes, key regulatory networks, and to define phenotypes or molecular signatures to improve the diagnosis or classification of the disease. We have used this approach in the study of one of the major causes of allergic diseases in Mediterranean countries, the olive pollen response, in order to find differential molecular markers among five clinical groups, Non-allergic, Asymptomatic, Allergic but not to olive pollen, Non-treated, olive pollen allergic patients and Olive pollen allergic patients (under specific-immunotherapy). The results of gene-expression by principal components analysis (PCA) clearly showed five clusters of samples that correlated with the five clinical groups. Analysis of differential gene-expression by multiple testing, and functional analysis by KEGG and Gene-Ontology revealed differential genes and pathways among the 5 clinical groups.

Publication Title

Differential gene-expression analysis defines a molecular pattern related to olive pollen allergy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19290
Cardiotoxicity of tubulin binders
  • organism-icon Rattus norvegicus
  • sample-icon 82 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The use of tubulin binders (TBs) in oncology indications often is associated with cardiotoxicity, the mechanism of which has not been elucidated. We observed that a single administration of TBs to rats caused an increase in the number of mitotic figures in the myocardial interstitium after 24 hours. We therefore hypothesized that interstitial cells are the primary target of TBs. To test this hypothesis, we evaluated the acute effects of a single intravenous administration of 3 reference TBs, colchicine (0.2 and 2 mg/kg), vinblastine (0.5 and 3 mg/kg), and vincristine (0.1 and 1 mg/kg) 6 and 24 hours after dosing. Mitotic arrest was identified at 24 hours in all high-dose groups based on an increase in the number of mitotic figures in the interstitium coupled with a dramatic decrease in the number of Ki67-positive interstitial cells. Analysis of the myocardial transcriptomic data further supported G2/M cell cycle arrest 6 hours after dosing with the high-dose groups of all 3 compounds. Apoptotic figures and an increase in the number of cleaved caspase 3-positive cells were identified at 6 and 24 hours at the highest dose of each compound almost exclusively in interstitial cells; a few cardiomyocytes were affected as well. Transcriptomic data further suggested that some of the affected interstitial cells were endothelial cells based on the up-regulation of genes typically associated with vascular damage and down-regulation of Endothelial Cell-Specific Molecule 1 and Apelin. Taken together, these data identify endothelial cells of the myocardium as the primary target of the cardiotoxicity of TBs and identify cell cycle arrest as the mechanism of this toxicity.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact