refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 40 results
Sort by

Filters

Technology

Platform

accession-icon GSE44905
Expression data from LNCaP cells treated with DHT and enzalutamide
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Enzalutamide (formerly MDV3100 and available commercially as Xtandi), a novel androgen receptor (AR) signaling inhibitor, blocks the growth of castration-resistant prostate cancer (CRPC) in cellular model systems and was shown in a clinical study to increase survival in patients with metastatic CRPC. Enzalutamide inhibits multiple steps of AR signaling: (1) binding of androgens to AR, (2) AR nuclear translocation, and (3) association of AR with DNA.

Publication Title

Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15689
A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants regulate their time to flowering by gathering information from the environment. Photoperiod and temperature are among the most important environmental variables. Suboptimal, but not near-freezing, temperatures regulate flowering through the thermosensory pathway, which overlaps with the autonomous pathway. Here we show that ambient temperature regulates flowering by two genetically distinguishable pathways, one that requires TFL1 and another that requires ELF3. The delay in flowering time observed at lower temperatures was partially suppressed in single elf3 and tfl1 mutants, whereas double elf3 tfl1 mutants were insensitive to temperature. tfl1 mutations abolished the temperature response in cryptochrome mutants that are deficient in photoperiod perception, but not in phyB mutants that have a constitutive photoperiodic response. Contrary to tfl1, elf3 mutations were able to suppress the temperature response in phyB mutants, but not in cryptochrome mutants. The gene expression profile revealed that the tfl1 and elf3 effects are due to the activation of different sets of genes and identified CCA1 and SOC1/AGL20 as being important cross talk points. Finally, genome-wide gene expression analysis strongly suggests a general and complementary role for ELF3 and TFL1 in temperature signalling.

Publication Title

A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38486
Transcriptional Profiling of Arabidopsis Root Hairs and Pollen Defines an Apical Growth Signature
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Despite their different origin and function, both pollen tubes and root hairs share the same sort of apical growth mechanism, i.e., the spatially focused cell expansion at the very apex. Ion fluxes, membrane trafficking, the actin cytoskeleton and their interconnection via signaling networks have been identified as fundamental processes underlying this kind of growth. Several molecules involved in apical growth have been identified, but the genetic basis is far from being fully characterized. We have used Affymetrix Arabidopsis ATH1 GeneChips to obtain the expression profiles of isolated Arabidopsis root hairs. A comparison with the expression profile of flow-sorted pollen grains reveals an overlap in the expression of 4989 genes, which corresponds to 42% of the root hair transcriptome and 76% of the pollen transcriptome, respectively. Our comparison with transcriptional profiles of vegetative tissues by principal component analysis and hierarchical clustering shows a clear separation of these samples comprised of cell types with diffuse growth from the two cell types with apical growth. 277 genes are enriched and 49 selectively expressed, respectively, in root hairs and pollen. From this set of genes emerges an apical growth signature containing novel candidate genes for apical growth determination.

Publication Title

Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73341
Expression data from Human Microvascular Endothelial Cells exposed or not to low-dose ionizing radiation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We have previously shown that low doses of ionizing radiation (LDIR) induce angiogenesis. In the present study we investigated their action in experimentally induced hindlimb ischemia. We demonstrated that 0.3 Gy, administered for four consecutive days, significantly improves blood perfusion in the murine ischemic limb by stimulating angiogenesis and arteriogenesis. This is achieved through durable and simultaneous up-regulation of a repertoire of pro-angiogenic factors and their receptors in endothelial cells, as evident in cells isolated from the irradiated gastrocnemius muscles. Moreover, we demonstrated that this mechanism is mediated via VEGFR signaling, since VEGFR inhibition abrogated the LDIR-mediated gene up-regulation and impeded the increase in vessel density. Importantly, the vasculature in an irradiated non-ischemic bed is not affected and no adverse effects associated to the use of LDIR were seen. These findings disclose an innovative, non-invasive strategy to induce therapeutic angiogenesis in a murine model of severe hindlimb ischemia, emerging as a novel approach in the treatment of Critical Limb Ischemia patients.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9044
HOXB4 target genes in ES cell-derived embryoid bodies (EBs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To unravel the molecular mechanism by which HOXB4 promotes the expansion of early hematopoietic progenitors within differentiating ES cells, we analzed the gene expression profiles of embryoid bodies (EBs) in which transcription of HOXB4 had been induced or not induced. A substantial number of the identified HOXB4 target genes are involved in signaling pathways important for controlling self-renewal, maintenance and differentiation of stem cells. Furthermore, we demonstrate that HOXB4 activity and FGF-signaling are intertwined. HOXB4-mediated expansion of ES cell-derived early progenitors was enhanced by specific and complete inhibition of FGF-receptors. In contrast, the expanding activity of HOXB4 on hematopoietic progenitors in day4-6 embryoid bodies was blunted in the presence of basic FGF (FGF2) indicating a dominant negative effect of FGF-signaling on the earliest hematopoietic cells. Taken together, we show that modulation of FGF signaling is an essential feature of HOXB4 activity in the context of embryonic hematopoiesis.

Publication Title

HOXB4's road map to stem cell expansion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE108033
Maternal gene expression data from dMLL3/4-depleted Drosophila embryos
  • organism-icon Drosophila melanogaster
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Drosophila Gene 1.1 ST Array (drogene11st)

Description

Analysis of Drosophila melanogaster early embryos (pre-zygotic genome activation) following the germ line-specific depletion of the dMLL3/4 histone methyltransferase (also known as Trr). These results provide insight into the molecular mechanisms responsible for the assembly of the zygotic genome at fertilization.

Publication Title

The Trithorax group protein dMLL3/4 instructs the assembly of the zygotic genome at fertilization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98595
Cabergoline-treated lutein granulosa cells from polycystic ovarian syndrome (PCOS) patients exhibit higher transcriptomic response than cabergoline-treated controls
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This study assessed the transcriptomic profiles of lutein granulosa cells (LGCs) from women with and without PCOS using Affymetrix microarray chips to provide novel information about the molecular changes that occur in these cells when they are treated with a D2-ag (Cb2) and to assess the signal transduction pathways regulated by this treatment.

Publication Title

Dysregulated genes and their functional pathways in luteinized granulosa cells from PCOS patients after cabergoline treatment.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE54934
Global expression profile in a combined study in low grade meningiomas and schwannomas shows upregulation in PDGF, CDH1, SLIT2 and MET.
  • organism-icon Homo sapiens
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Background: Schwannomas and grade I meningiomas are non-metastatic neoplasms that shares the common mutation of gene NF2. They usually appear in Neurofibromatosis type 2 patients. Currently, there is no drug treatment available for both tumors, so the use of wide expression technologies is crucial to find those therapeutic targets.

Publication Title

Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56597
Wide methylation analysis in vestibular schwannoma [Affymetrix exon level analysis]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Vestibular schwannomas are intracranial tumors that affects unilateral and sporadically or bilateral when is associated to Neurofibromatosis type 2 syndrome. The hallmark of the disease is the biallelic inactivation by NF2 gene mutation or LOH of chromosome 22q, where this gene harbors. In this work, we used Infinium HumanMethylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 non-vestibular schwannomas and 5 healthy nerves. Our results shows a trend to hypomethylation in schwannomas. Furthermore, HOX genes, located at 4 clusters in the genome, displayed hypomethylation in numerous CpG sites in vestibular but not in non-vestibular schwannomas. Additionally, several microRNA and protein-coding genes were found hypomethylated at promoter regions and confirmed by expression analysis; including miRNA-199a1, miRNA-21, MET and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP; that would increase the complexity of methylation-expression. Overall, our results shows specific epigenetic signatures in several coding genes and microRNA that could be used in the finding of potential therapeutic targets.

Publication Title

Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39645
Microarray Analysis in Vestibular Schwannomas
  • organism-icon Homo sapiens
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Vestibular Schwannomas are benign neoplasms that arise from the vestibular nerve. The hallmark of these tumors is the biallelic inactivation of NF2. Transcriptomic alterations, such as the Nrg1/ErbB2 pathway, have been described in Schwannomas. Here, we have performed a whole transcriptomic analysis in 31 vestibular Schwannomas and 9 control nerves in the Affymetrix Gene 1.0ST platform, validated by quantitative Real-Time PCR using TaqMan Low Density Arrays. We performed a mutational analysis of NF2 by PCR/dHPLC and MLPA as well as a microsatellite marker analysis of the loss of heterozygosity of chromosome 22q. The microarray analysis showed that 1516 genes were deregulated, and 48 of the genes were validated by qRT-PCR. At least two genetic hits (allelic loss and/or gene mutation) in NF2 were found in 16 tumors, seven cases showed one hit and eight tumors showed no NF2 alteration. As conclusion, MET and associated genes such as ITGA4/B6, PLEXNB3/SEMA5 and CAV1 showed a clear deregulation in vestibular Schwannomas. In addition, androgen receptor (AR) downregulation may denote a hormonal effect or cause in this tumor. Furthermore, the osteopontin gene (SPP1), which is involved in Merlin protein degradation, was upregulated, which suggests that this mechanism may also exert a pivotal role in Schwannoma Merlin depletion. Finally, no major differences were found between tumors of different sizes, histological types or NF2 status, which suggests that at the mRNA level all Schwannomas, regardless of molecular and clinical characteristics, may share common features that can be used in the fight against them.

Publication Title

Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact