refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11452 results
Sort by

Filters

Technology

Platform

accession-icon GSE63058
7q11.23 dosage-dependent dysregulation in the human pluripotent state primes aberrant transcriptional programs in disease-relevant lineages
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE63040
7q11.23 dosage-dependent dysregulation in the human pluripotent state primes aberrant transcriptional programs in disease-relevant lineages (microarray)
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

We apply the cellular reprogramming experimental paradigm to two disorders caused by symmetrical copy number variations (CNV) of 7q11.23 and displaying a striking combination of shared as well as symmetrically opposite phenotypes: Williams Beuren syndrome (WBS) and 7q microduplication syndrome (7dup). Through a uniquely large and informative cohort of transgene-free patient-derived induced pluripotent stem cells (iPSC), along with their differentiated derivatives, we find that 7q11.23 CNV disrupt transcriptional circuits in disease-relevant pathways already at the pluripotent state. These alterations are then selectively amplified upon differentiation into disease-relevant lineages, thereby establishing the value of large iPSC cohorts in the elucidation of disease-relevant developmental pathways. In addition, we functionally define the quota of transcriptional dysregulation specifically caused by dosage imbalances in GTF2I (also known as TFII-I), a transcription factor in 7q11.23 thought to play a critical role in the two conditions, which we found associated to key repressive chromatin modifiers. Finally, we created an open-access web-based platform (accessible at http://bio.ieo.eu/wbs/ ) to make accessible our multi-layered datasets and integrate contributions by the entire community working on the molecular dissection of the 7q11.23 syndromes.

Publication Title

7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE34860
Gene expression profiling in acute myeloid leukemia with mutated NPM
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Approximately one third of acute myeloid leukemias (AMLs) are characterized by aberrant cytoplasmic localization of Nucleophosmin (NPMc+ AML), consequent to mutations in the NPM putative nucleolar localization signal. These events are mutually exclusive with the major AML-associated chromosomal rearrangements, and are frequently associated with normal karyotype, Fms-like tyrosine kinase (FLT3) mutations and multilineage involvement. We report the gene expression profiles of 78 de novo AMLs (72 with normal karyotype; 6 with non-major chromosomal abnormalities) that were characterized for the subcellular localization and mutation status of NPM. Unsupervised clustering clearly separated NPMc+ from NPMc- AMLs, regardless of the presence of FLT3 mutations or non-major chromosomal rearrangements, supporting the concept that NPMc+ AML represents a distinct entity. The molecular signature of NPMc+ AML includes up-regulation of several genes putatively involved in the maintenance of a stem cell phenotype, suggesting that NPMc+ AML may derive from a multipotent hematopoietic progenitor.

Publication Title

Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10537
Gene expression profile and DNA binding pattern of AML1/ETO in U937 cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10580
Genes regulated by PRDM5 in U2OS cells.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PRDM5 is a recently identified member of the PRDM family of proteins, which functions as a transcriptional repressor by recruiting histone methyltransferase G9A to DNA, and behaves as a putative tumor suppressor in different types of cancer.

Publication Title

The tumor suppressor PRDM5 regulates Wnt signaling at early stages of zebrafish development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64919
Genes regulated in EML1 cells expressing the TEL-AML1 oncogene after 5 and 7 days of treatment with IL7 and FLT3 ligand.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene, which functions as a transcription factor.

Publication Title

The TEL-AML1 fusion protein of acute lymphoblastic leukemia modulates IRF3 activity during early B-cell differentiation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE17551
Genes regulated after transient knock-down of Pirin in WM-266 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pirin (PIR) is a putative transcriptional regulator abundantly expressed in melanocytes and in a subset of primary and metastatic melanomas. Ablation of PIR in the melanoma cell lines results in induction of a senescence-like phenotype.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31786
Yy1 activity in mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16798
Genes regulated after knock-down of Pirin in U937 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pirin (PIR) is a putative transcriptional regulator whose expression is silenced in cells bearing the AML1/ETO and PML/RAR leukemogenic fusion proteins and is significantly repressed in a large proportion of acute myeloid leukemias. PIR expression increases during in vitro myeloid differentiation of primary hematopoietic precursor cells, and ablation of PIR in the U937 myelomonocytic cell line or in murine primary hematopoietic precursor cells results in impairment of terminal myeloid differentiation.

Publication Title

Pirin downregulation is a feature of AML and leads to impairment of terminal myeloid differentiation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE31354
The Polycomb Group Protein Suz12 Is Required for Embryonic Stem Cell Differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Polycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos.

Publication Title

The polycomb group protein Suz12 is required for embryonic stem cell differentiation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact