refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3881 results
Sort by

Filters

Technology

Platform

accession-icon GSE10320
Predicting Relapse in Favorable Histology Wilms Tumor Using Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 144 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The gene expression patterns of favorable histology Wilms tumors (FHWT) that relapsed were compared with those that did not relapse using oligonucleotide arrays

Publication Title

Predicting relapse in favorable histology Wilms tumor using gene expression analysis: a report from the Renal Tumor Committee of the Children's Oncology Group.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14767
Subsets of very low risk Wilms Tumors show distinctive gene expression, histologic, and clinical features
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The goal of this study is to define biologically distinct subsets of Very Low Risk Wilms Tumors (VLRWT) using oligonucleotide arrays.

Publication Title

Subsets of very low risk Wilms tumor show distinctive gene expression, histologic, and clinical features.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11987
Expression data from GLI1-transformed RK3E cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

SHH signaling pathway is activated in many type of cancers. However, the role of its activation in particular type of cancer was poorly understood. The GLI family transcription factor GLI1 is the effector of Shh pathway activation and functions as oncogene. Our goal of research is to identify the GLI1 targets in desmoplastic medulloblastomas.

Publication Title

Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4817
Sphingosine 1-phosphate effect on glioblastoma cells in vitro
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Abstract

Publication Title

Text mining of full-text journal articles combined with gene expression analysis reveals a relationship between sphingosine-1-phosphate and invasiveness of a glioblastoma cell line.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23183
Differential Gene Expression of Soluble CD8+ T-cell mediated suppression of HIV replication in three older children
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Goal: To compare the gene expression profiles from pediatric patients with each other, with those reported in adults and in those related to exosomes.

Publication Title

Differential gene expression of soluble CD8+ T-cell mediated suppression of HIV replication in three older children.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE11482
Rhabdoid Tumor: Gene Expression Clues to Pathogenesis and Potential Therapeutic Targets
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Rhabdoid tumors (RT) are aggressive tumors characterized by genetic loss of SMARCB1 (SNF5, INI-1), a component of the SWI/SNF chromatin remodeling complex. No effective treatment is currently available. This study seeks to shed light on the SMARCB1-mediated pathogenesis of RT and to discover potential therapeutic targets. Global gene expression of 10 RT was compared with 12 cellular mesoblastic nephromas, 16 clear cell sarcomas of the kidney, and 15 Wilms tumors. 114 top genes were differentially expressed in RT (p<0.001, fold change >2 or <0.5). Among these were down-regulation of SMARCB1 and genes previously associated with SMARCB1 (ATP1B1, PTN, DOCK4, NQO1, PLOD1, PTP4A2, PTPRK). 28/114 top differentially expressed genes were involved with neural or neural crest development and were all sharply down-regulated. This was confirmed by Gene Set Enrichment Analysis (GSEA). Neural and neural crest stem cell marker proteins SOX10, ID3, CD133 and Musashi were negative by immunohistochemistry, whereas Nestin was positive. Decreased expression of CDKN1A, CDKN1B, CDKN1C, CDKN2A, and CCND1 was identified, while MYC-C was upregulated. GSEA of independent gene sets associated with bivalent histone modification and polycomb group targets in embryonic stem cells demonstrated significant negative enrichment in RT. Several differentially expressed genes were associated with tumor suppression, invasion and metastasis, including SPP1 (osteopontin), COL18A1 (endostatin), PTPRK, and DOCK4. We conclude that RTs arise within early progenitor cells during a critical developmental window in which loss of SMARCB1 directly results in repression of neural development, loss of cyclin dependent kinase inhibition, and trithorax/polycomb dysregulation.

Publication Title

Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45462
Molecular Signatures of Muscle Rehabilitation After Limb Disuse
  • organism-icon Homo sapiens
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have identified the molecular (transcriptional) signatures associated with muscle remodeling in response to rehabilitation in a patient cohort. Subjects with a closed malleolus fracture treated conservatively with 6 weeks of cast immobilization are recruited. Then subjects are enrolled in a 6 weeks structured rehabilitation program focusing on progressive resistance training of the ankle plantar flexor muscles. Phenotypic measurements are performed before (pre-rehab), during (mid-rehab, 3 weeks) and immediately after (post-rehab, 6 weeks) the rehabilitation intervention. The maximal cross-sectional area (muscle size) and peak torque (muscle strength) are quantified using isometric and isokinetic tests in combination with 3D-magnetic resonance imaging. Ankle plantar flexor muscle size and strength measurements are also performed on the uninvolved limb (serves as a control) at 4 months post-immobilization. Measurements are also acquired from the contralateral leg, which serves as an internal control.

Publication Title

Molecular signatures of differential responses to exercise trainings during rehabilitation.

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE45550
Molecular responses in skeletal muscles following spinal cord injury and the effect of locomotor training
  • organism-icon Rattus norvegicus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Spinal cord injury (SCI) is one of the most disabling health problems facing adults today. Locomotor training has been shown to induce substantial recovery in muscle size and muscle function in both transected and contusion injury animal models of SCI.

Publication Title

Transcriptional Pathways Associated with Skeletal Muscle Changes after Spinal Cord Injury and Treadmill Locomotor Training.

Sample Metadata Fields

Time

View Samples
accession-icon GSE16348
Gene expression and muscle fiber function in a porcine ICU model
  • organism-icon Sus scrofa
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Background: Skeletal muscle wasting and impaired muscle function in response to mechanical ventilation and immobilization in intensive care unit (ICU) patients are clinically challenging partly due to (i) the poorly understood intricate cellular and molecular networks; and (ii) the unavailability of an animal model mimicking this condition. By employing a unique porcine model mimicking the conditions in the ICU with long-term mechanical ventilation and immobilization, we have analyzed the expression profile of skeletal muscle biopsies taken at three time points during a five-day period.

Publication Title

Gene expression and muscle fiber function in a porcine ICU model.

Sample Metadata Fields

Disease, Time

View Samples
accession-icon GSE11971
Skeletal muscles of untreated children with juvenile dermatomyositis
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Background :To evaluate the impact of the duration of chronic inflammation on gene expression in skeletal muscle biopsies (MBx) from untreated children with juvenile dermatomyositis (JDM) and identify genes and biological processes associated with the disease progression, expression profiling data from 16 girls with active symptoms of JDM greater or equal to 2 months were compared with 3 girls with active symptoms less than 2 months.

Publication Title

Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact