refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3753 results
Sort by

Filters

Technology

Platform

accession-icon GSE9018
IgA impact on distal small intestine after colonization with B. thetaiotaomicron
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Wildtype B6, Rag1-/- B6 and Rag1-/- B6 mice harboring the 225.4 IgA producing hybridoma were colonized for 10 days with Bacteroides thetaiotaomicron

Publication Title

IgA response to symbiotic bacteria as a mediator of gut homeostasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17156
Gene expression signatures of symptomatic respiratory viral infection in adults
  • organism-icon Homo sapiens
  • sample-icon 113 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Diagnosis of acute respiratory viral infection is currentlybased on clinical symptoms and pathogen detection. Use of host peripheral blood gene expression data to classify individuals with viral respiratory infection represents a novel means of infection diagnosis.

Publication Title

Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE1413
AKT_Prostate_RAD001_v_PLACEBO
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Transgenic (Probasin driven Myr-AKT)or wild-type littermates were treated with RAD001 or placebo and sacrificed at 12 and 48 hours following the beginning of treatment

Publication Title

mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46403
Vitamin C induces Tet-dependent DNA demethylation in ES cells to promote a blastocyst-like methylome
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE46319
Vitamin C induces Tet-dependent DNA demethylation in ES cells to promote a blastocyst-like methylome [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germline and may be mediated by Tet (ten-eleven-translocation) enzymes, which convert 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC). Tet enzymes have been extensively studied in mouse embryonic stem (ES) cells, which are generally cultured in the absence of Vitamin C, a potential co-factor for Fe(II) 2-oxoglutarate dioxygenase enzymes like Tets. Here we report that addition of Vitamin C to ES cells promotes Tet activity leading to a rapid and global increase in hmC. This is followed by DNA demethylation of numerous gene promoters and up-regulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site (TSS) of genes affected by Vitamin C treatment. Importantly, Vitamin C, but not other antioxidants, enhances the activity of recombinant human Tet1 in a biochemical assay and the Vitamin C-induced changes in hmC and mC are entirely suppressed in Tet1/2 double knockout (Tet DKO) ES cells. Vitamin C has the strongest effects on regions that gain methylation in cultured ES cells compared to blastocysts and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A-particle (IAP) elements, which are resistant to demethylation in the early embryo, are resistant to Vitamin C-induced DNA demethylation. Collectively, this study establishes that Vitamin C is a direct regulator of Tet activity and DNA methylation fidelity in ES cells.

Publication Title

Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89744
Analyses of a mutant FoxP3 allele reveal BATF as a critical transcription factor in the differentiation and accumulation of tissue regulatory T cells
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89654
Expression data from Treg cells expressing mutant FoxP3
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FoxP3 is a central regulator of immunological tolerance, controlling the development and function of regulatory T (Treg) cells. To dissect the complex processes orchestrated by FoxP3, we investigated impacts of three autoimmune disease-associated missense FoxP3 mutations (i.e., I363V, A384T, R397W) through knock-in mutagenesis in mice.

Publication Title

Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89645
Expression data from mutant FoxP3-transduced CD4 T cells
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FoxP3 is a central regulator of immunological tolerance, controlling the development and function of regulatory T (Treg) cells. To dissect the complex processes orchestrated by FoxP3, we investigated impacts of three autoimmune disease-associated missense FoxP3 mutations in mice.

Publication Title

Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89656
Expression data from BATF-deficient Treg cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FoxP3 is a central regulator of immunological tolerance, controlling the development and function of regulatory T (Treg) cells. To dissect the complex processes orchestrated by FoxP3, we investigated impacts of three autoimmune disease-associated missense FoxP3 mutations in mice. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues.

Publication Title

Analyses of a Mutant Foxp3 Allele Reveal BATF as a Critical Transcription Factor in the Differentiation and Accumulation of Tissue Regulatory T Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19743
A large-scale clinical study of gene expression response to severe burn injury
  • organism-icon Homo sapiens
  • sample-icon 177 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To understand the age-dependent response to burn injury, blood samples from pediatric and adult patients were collected at different times after severe burn injury.

Publication Title

Analysis of factorial time-course microarrays with application to a clinical study of burn injury.

Sample Metadata Fields

Sex, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact