refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon GSE26900
Effect of Tet1-knockdown on gene expression in mouse ES cells cultured in ES and TS cell culture conditions
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

TET-family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem (ES) cells. ES cells depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1, and display hyperactive Nodal signalling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in vitro. In Fgf4- and heparin-supplemented culture conditions that favor derivation of trophoblast stem (TS) cells, Tet1-depleted ES cells activate the trophoblast stem cell lineage determinant Elf5 and can colonize the placenta in mid-gestation embryo chimeras. Consistent with these findings, Tet1-depleted ES cells form aggressive hemorrhagic teratomas with increased endoderm, reduced neuroectoderm and ectopic appearance of trophoblastic giant cells. Thus Tet1 functions to regulate the lineage differentiation potential of ES cells. Here, we performed whole-genome transcriptome profiling of ES cells stably depleted of Tet1 by shRNA knockdown (Tet1-kd) cultured in either standard ES cell or in TS cell culture conditions. Gene expression changes in Tet1-kd ES cells were fairly modest compared to control (GFP-kd) cells, although gene ontology (GO) analysis of differentially expressed genes yielded many terms related to embryonic development and cell cycle regulation. In TS cell culture conditions, a core set of genes defining trophectodermal cell differentiation, including Cdx2, Eomes and Tead4, was enriched in Tet1-kd compared to GFP-kd cells.

Publication Title

Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact