refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 535 results
Sort by

Filters

Technology

Platform

accession-icon GSE57185
Growth cone localization of the mRNA encoding a chromatin regulator modulates neurite outgrowth
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Neurons exploit mRNA localization and local translation to spatio-temporally regulate gene expression during development. Local translation and retrograde transport of transcription factors regulate nuclear gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuronal-like cells and of hippocampal neurons. We show that Hmgn5 3UTR drives growth cone localization and translation of a reporter gene, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth while HMGN5 overexpression induces neurite outgrowth and global chromatin decompaction. Interestingly, control of both neurite outgrowth and chromatin structure is dependent on proper growth cone localization of Hmgn5 mRNA. Our results provide the first evidence that mRNA localization and local translation might serve as a mechanism to couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.

Publication Title

Growth Cone Localization of the mRNA Encoding the Chromatin Regulator HMGN5 Modulates Neurite Outgrowth.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71662
Gene expression data from mouse squamous cell carcinoma cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We describe a function of focal adhesion kinase (FAK) in driving anti-tumor immune evasion. The kinase activity of nuclear-targeted FAK in squamous cancer cells drives exhaustion of CD8+ T-cells and recruitment of regulatory T-cells by transcriptionally regulating chemokine/cytokine and ligand-receptor networks, including transcription of Ccl5 that is crucial. These changes inhibit antigen-primed cytotoxic CD8+ T-cell activity, permitting growth of FAK-expressing tumors.

Publication Title

Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61142
Effects of the insulin degrading enzyme silencing on the transcriptome of HepG2 cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Insulin degrading enzyme (IDE) is a major enzyme responsible for insulin degradation in the liver. The modulation of insulin degrading enzyme activity is hypothesized to be a link between T2DM and liver cancer. Results provide insight into role of IDE in proliferation and other cell functions.

Publication Title

Modulation of insulin degrading enzyme activity and liver cell proliferation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE63383
Expression data from asthmatic and healthy airway smooth muscle cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Persistent severe asthma is associated with hyper-contractile airways and structural changes in the airway wall, including an increased airway smooth muscle (ASM) mass. This study used gene expression profiles from asthmatic and healthy airway smooth muscle cells grown in culture to identify novel receptors and pathways that potentially contributed to asthma pathogenesis.

Publication Title

Latrophilin receptors: novel bronchodilator targets in asthma.

Sample Metadata Fields

Sex, Disease, Treatment

View Samples
accession-icon SRP185847
Single-cell analysis of KPC pancreatic tumor cells
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Single-cell analysis of KPC pancreatic tumor cells Overall design: Evaluate the single-cell transcriptomic landscape in 3 KPf/fC tumors

Publication Title

A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP185634
Single-cell RNAseq data for pancreatic ductal adenocarcinoma tumor from KPC mice
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

mPDAC tumors of KPC mice Overall design: medium and large size tumors

Publication Title

A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE63808
chronic temporal lobe epilepsy: biopsy hippocampus
  • organism-icon Homo sapiens
  • sample-icon 129 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Analysis of biopsy hippocampal tissue of patients with pharmacoresistant temporal lobe epilepsy (TLE) undergoing neurosurgical removal of the epileptogenic focus for seizure control. Chronic TLE goes along with focal hyperexcitability. Results provide insight into molecular mechanisms that may play a role in seizure propensity

Publication Title

Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE57999
Expression data from baseline and post-endurance training in human PBMCs
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

There is an association between transcriptome and the exercise-related phenotype. Peripheral blood cells suffer alterations in the gene expression pattern in response to perturbations caused by exercise. The acute response to endurance activates stress and inflammation, as well as growth and tissue repair responses.

Publication Title

PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment, Subject, Time

View Samples
accession-icon GSE29806
Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in NOD mice
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Vertebrates typically harbor a rich gastrointestinal microbiota, which has co-evolved with the host over millennia and is essential for several of its physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T helper (Th)17 population in the small intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type-1 diabetes in this prototypical, spontaneous model. There was a strong co-segregation of SFB-positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T cell compartments of the gut, pancreas or systemic lymphoid tissues. Th17 signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4+ T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, likely reflecting their variable dependence on different Th subsets.

Publication Title

Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE62064
Radial glia require PDGFD/PDGFRB signaling in human but not mouse neocortex
  • organism-icon Homo sapiens
  • sample-icon 87 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of gene expression over serial 150um sections of a single gestational week 14.5 human neocortical specimen. The hypothesis tested with this dataset was that a transcriptional signature of radial glia (neural stem cells) could be isolated via unsupervised gene coexpression analysis due to variation in the abundance of this cell type from section to section. This dataset is the first of its kind generated using this method (Gene Coexpression Analysis of Serial Sections, or GCASS).

Publication Title

Radial glia require PDGFD-PDGFRβ signalling in human but not mouse neocortex.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact