refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1975 results
Sort by

Filters

Technology

Platform

accession-icon GSE82107
Synovial biopsies of osteoarthritis patients
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Synovial biopsies were obtained from osteoarthritis (OA) synovium to find genes upregulated during OA.

Publication Title

Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE77298
Synovial biopsies of rheumatoid arthritis and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Synovial biopsies were obtained from rheumatoid arthritis (RA) synovium and from subjects without a joint disease to find gene upregulated during RA.

Publication Title

Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon SRP066152
Transcriptome-wide regulation of pre-mRNA splicing and expression by the RNA-binding protein Quaking during monocyte to macrophage differentiation [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes of early, human atherosclerotic lesions, but abundant in macrophages of advanced plaques. Specific depletion of QKI protein impaired monocyte adhesion, migration, differentiation into macrophages, and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, revealed striking changes in QKI-dependent mRNA levels and splicing of RNA transcripts. Overall design: RNA-seq analysis of primary monocytes and macrophages from a QKI haploinsufficient patient and their (control) sibling.

Publication Title

Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66616
High EMT signature score of invasive non-small cell lung cancer (NSCLC) cells correlates with NFB driven colony-stimulating factor 2 (CSF2/GM-CSF) secretion by neighboring stromal fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 16.1.0, HsEx10stv2_Hs_REFSEQ (huex10st)

Description

We established co-cultures of invasive or non-invasive NSCLC cell lines and various types of fibroblasts (FBs) to more precisely characterize the molecular mechanism of tumor-stroma crosstalk in lung cancer

Publication Title

High EMT Signature Score of Invasive Non-Small Cell Lung Cancer (NSCLC) Cells Correlates with NFκB Driven Colony-Stimulating Factor 2 (CSF2/GM-CSF) Secretion by Neighboring Stromal Fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22845
Gene expression profiling of CEBPA double-, single-mutant and CEBPA wild type AML
  • organism-icon Homo sapiens
  • sample-icon 149 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A previously predictive CEBPA double mutant (CEBPAdm) signature was hampered by the recently reported CEBPA silenced AML cases that carry a similar gene expression profile (GEP). Two independent AML cohorts were used to train and evaluate the predictive value of the CEBPAdm signature in terms of sensitivity and specificity. A predictive signature was created, containing 25-probe sets by using a logistic regression model with Lasso regularization, which selects discriminative probe sets between the classes, CEBPAdm and all other AML cases, CEBPA wild type (CEBPAwt) and CEBPA single mutant (CEBPAsm). Subsequently, a classifier was trained on the entire HOVON-SAKK cohort based on a two-class approach; CEBPAdm versus all other cases (CEBPAwt and CEBPAsm). This trained classifier subsequently classified 16 candidate CEBPAdm cases in the AMLSG-cohort out of 154 AML cases. This approach showed perfect sensitivity and specificity (both 100%). In addition, we have performed a classification between CEBPAdm ,CEBPAsm, and CEBPAwt to infer if we were able to accurately classify CEBPAsm cases. We observed that all CEBPAsm cases were classified as CEBPAwt, thus CEBPAsm cases do not have a consistent gene expression pattern and are different from the CEBPAdm group.

Publication Title

Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18497
Diagnosis-relapse in ALL
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Almost a quarter of pediatric patients with Acute Lymphoblastic Leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis relapse pairs of ALL patients using genomewide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients very few differences between diagnosis and relapse samples were found (stable group), suggesting that mostly extra-leukemic factors (e.g., drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 samples with clear differences in gene expression (skewed group), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of relapses are due to selection or emergence of a clone with deregulated expression of a genes involved in pathways that regulate B cell signaling, development, cell cycle, cellular division and replication.

Publication Title

Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon SRP170629
RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Background and Purpose—Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. Methods—We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. Results—We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. Conclusions—For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture. Overall design: RNA sequencing of 44 intracranial aneurysm samples (including 21 unruptured, 22 ruptured and 1 undetermined) and 16 control samples of the intracranial cortical artery

Publication Title

RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE40672
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Colon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This hyperproliferation results in epithelial hyperplasia which increases the risk of colon cancer. In humans, a high red-meat diet increases Bacteroides spp in feces. Therefore, we simultaneously investigated the effects of dietary heme on colonic microbiota and on the host mucosa of mice. Whole genome microarrays showed that heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. Using 16S rRNA phylogenetic microarrays, we investigated whether bacteria play a role in this changed signaling. Heme increased Bacteroidetes and decreased Firmicutes in colonic contents. This shift was most likely caused by a selective susceptibility of Gram-positive bacteria to heme cytotoxic fecal water, which is not observed for Gram-negative bacteria, allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria most probably increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There was no functional change in the sensing of the bacteria by the mucosa, as changes in inflammation pathways and Toll- like receptor signaling were not detected. This unaltered host-microbe cross-talk indicates that the changes in microbiota did not play a causal role in the observed hyperproliferation and hyperplasia.

Publication Title

Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE34253
Dietary heme modulates microbiota and mucosa of mouse colon without significant host-microbe cross talk
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Previously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the Firmicutes in colonic content. This shift was caused by a selective susceptibility of Gram-positive bacteria to the heme cytotoxic fecal waters, which is not observed for Gram-negative bacteria allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There were no signs of sensing of the bacteria by the mucosa, as changes in TLR signaling were not present. This lack of microbe-host cross talk indicated that the changes in microbiota do not play a causal role in the heme-induced hyperproliferation.

Publication Title

Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE5563
Gene expression profile of VIN lesions in comparison to controls
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to understand the molecular mechanism behind Vulvar Intraepithelial Neoplasia (VIN), we have analyzed the gene expression profile of VIN lesions in comparison to controls.

Publication Title

HPV related VIN: highly proliferative and diminished responsiveness to extracellular signals.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact