refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1535 results
Sort by

Filters

Technology

Platform

accession-icon GSE22611
NOD2 and desease associated variant NOD2-L1007fsinsC dependent genomewide transcriptional regulation in stable Flp-In HEK cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

NOD2 is an intracellular receptor for the bacterial cell wall component muramyl dipeptide (MDP) and variants of NOD2 are associated with chronic inflammatory diseases of barrier organs e.g. Crohn disease, asthma and atopic eczema. It is known that activation of NOD2 induces a variety of inflammatory and antibacterial factors. The exact transcriptomal signatures that define the cellular programs downstream of NOD2 activation and the influence of the Crohn-associated variant L1007fsinsC are yet to be defined. To describe the MDP-induced activation program, we analyzed the transcriptomal reactions of isogenic HEK293 cells expressing NOD2wt or NOD2L1007fsinsC to stimulation with MDP. Importantly, a clear loss-of-function could be observed in the cells carrying the Crohn-associated variant L1007fsinsC, while the NOD2wt cells showed differential regulation of growth factors, chemokines and several antagonists of NF-B, e.g. TNFAIP3 (A20) and IER3.

Publication Title

Genome-wide expression profiling identifies an impairment of negative feedback signals in the Crohn's disease-associated NOD2 variant L1007fsinsC.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE22186
Phosphorylation of p53 Serine 46 contributes to target gene selectivity of p53
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Role of p53 serine 46 in p53 target gene regulation.

Sample Metadata Fields

Specimen part, Cell line, Compound

View Samples
accession-icon GSE22184
Phosphorylation of p53 Serine 46 contributes to target gene selectivity of p53 (Exon)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The tumor suppressor p53 plays a crucial role in cellular growth control inducing a plethora of cellular response pathways. The molecular mechanisms that discriminate between the distinct p53-responses towards different stress treatments have remained largely elusive. Here, we have analyzed the p53-regulated pathways induced by two chemotherapeutical treatments, Actinomycin D inducing growth arrest and Etoposide resulting in apoptosis. We found that the genome-wide p53-binding patterns are almost identical upon both treatments notwithstanding transcriptional differences that we observed in genome-wide transcriptome analysis. To assess the role of post-translational modifications in target gene choice and activation we investigated the extent of phosphorylation of Serine 46 of p53 bound to DNA (p53-pS46), a modification that has been linked to apoptosis-pathways, and the extent of phosphorylation of Serine 15 (p53-pS15), a general p53-activation mark. Interestingly, the overall extent of S46 phosphorylation of p53 bound to DNA is considerably higher in cells directed towards apoptosis while the degree of phosphorylation at S15 of DNA bound p53 remains highly similar upon both treatments. Moreover, our data suggest that, following different chemotherapeutical treatments, the extent of chromatin-associated p53 phosphorylated at S46 but not at pS15 is higher on certain apoptosis related target genes, including the BAX and PUMA genes. These data provide evidence that cell fate decisions are not made primarily on the level of general p53 DNA-binding, but possibly through post-translational modifications of chromatin bound p53.

Publication Title

Role of p53 serine 46 in p53 target gene regulation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE49039
Comparison of gene expression from thymocyte populations and equivalent OP9-DL1 cultured cells
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Comparison between ex vivo immature, mature and stimulated T cells and in vitro generated counterparts. The T cells generated in vitro were cultured on OP9-DL1 stroma supplied with growth factors.

Publication Title

In vitro generation of mature, naive antigen-specific CD8(+) T cells with a single T-cell receptor by agonist selection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP147553
Splicing and epigenetic factors jointly regulate epidermal differentiation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report the effects of silencing SRSF1 or ZMAT2 in human epidermal stem cells on the transcriptome of epidermal stem cells. We found that silencing ZMAT2 or SRSF1 affects global splicing, however, ZMAT2 seems to regulate splicing of a smaller more specific subset of genes. Overall design: RNA-sequencing data following silencing SRSF1 or ZMAT2

Publication Title

Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP155035
STVI-120 Induction of differentiation in human epidermal stem cells followed by differential splicing analysis
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We report the effects of induction of differentiation in human epidermal stem cells on the splicing of the transcriptome. Overall design: RNA-sequencing data following induction of differentiation in human epidermal stem cells

Publication Title

Splicing and Chromatin Factors Jointly Regulate Epidermal Differentiation.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE62477
MELK-T1, a small molecule inhibitor of protein kinase MELK, decreases DNA damage tolerance in highly proliferating cancer cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Maternal Embryonic Leucine Zipper Kinase (MELK), a Ser/Thr protein kinase, is highly over expressed in stem and cancer cells. The oncogenic role of MELK is attributed to its capacity to disable critical cell cycle checkpoints and to enhance replication. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing, but this is often compromised by off target effects. Here we present the cellular validation of a novel, potent and selective small molecule MELK inhibitor, MELK-T1, which has enabled us to explore the biological function of MELK. Strikingly, the binding of MELK-T1 to endogenous MELK triggers a rapid and proteasome dependent degradation of the MELK protein. Treatment of MCF-7 breast adenocarcinoma cells with MELK-T1 leads to an accumulation of stalled replication forks and double strand breaks, followed by a replicative senescence phenotype. This phenotype correlates with a rapid and long-lasting ATM activation and phosphorylation of CHK2. Furthermore, MELK-T1 induces strong phosphorylation of p53 and prolonged up-regulation of p21.

Publication Title

MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE10362
Expression data from sequential P. aeruginosa cystic fibrosis (CF) isolates
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

To provide a more detailed survey of adaptive changes in the physiology of P. aeruginosa (PA) during long-term infection of the cystic fibrosis (CF) lung, we performed a comparative proteome and transcriptome analysis of a set of isogenic sequential non-mutator and mutator isolates from three selected CF patients. Recently, we showed that during CF lung persistence PA mutators converge to a virulence-attenuated phenotype. In this study, we demonstrate that besides virulence-associated traits (VATs) the adaptation process of PA predominantly comprises metabolic pathways. In end-stage mutator strains, transcripts of genes encoding VATs, chemotaxis, degradation of aromatic compounds and several two-component regulatory systems were decreased. In contrast, several transcripts of genes or proteins involved in metabolism of fatty acids, nucleotides, amino acids and the generation of energy were increased. Of particular interest is the increased expression level of genes involved in (i) the anaerobic arginine-deiminase pathway, (ii) the anaerobic respiration such as nitrate-uptake protein OprF, redox-active azurin and cytchrome c551 peroxidase, (iii) the micro-aerobic respiration such as high oxygen-affinity cytochrome oxidase cbb3 (iv) the tricarboxylic acid cycle (TCA), glyoxylate shunt and anaplerotic carboxylation reactions to oxaloacetate. Strikingly, an increased transcription of the anaerobic regulator gene anr correlates with the up-regulation of ANR-dependent genes. In conclusion, these changes in transcriptome and proteome indicate an adaptive shift towards constitutive expression of genes of metabolic pathways obviously required for growth under micro-aerobic and nutritional conditions of suppurative CF lung tissue. Finally, these results provide us with new targets for antimicrobial agents and biomarkers reflecting adaptation of PA towards progressive CF lung disease.

Publication Title

Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE147231
Identification of human cytotoxic ILC3s
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Pico Assay HT (clariomshumanht)

Description

Human ILCs are classically categorized into five subsets; cytotoxic CD127-CD94+ NK cells and non-cytotoxic CD127+CD94-, ILC1s, ILC2s, ILC3s and LTi cells. Here, we identify a novel subset within the CD127+ ILC population, characterized by the expression of the cytotoxic marker CD94. These CD94+ ILCs strongly resemble conventional ILC3s in terms of phenotype, transcriptome and cytokine production, but are highly cytotoxic. IL-15 was unable to induce differentiation of CD94+ ILCs towards mature NK cells. Instead, CD94+ ILCs retained RORγt, CD127 and CD200R expression and produced IL-22 in response to IL-15. Culturing non-cytotoxic CD127+ ILC1s or ILC3s with IL-12 induced upregulation of CD94 and cytotoxic activity, effects that were not observed with IL-15 stimulation. Thus, human helper ILCs can acquire a cytotoxic program without differentiating into NK cells.

Publication Title

Identification of human cytotoxic ILC3s.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP070694
BASP1 modifies the Tamoxifen response
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report that WT1 transcriptional repressor protein BASP1 interacts with oestrogen receptor alpha (Era), and interaction which in enhanced in the presence of Tamoxifen. We utilised RNASeq to identify common BASP1 and ERa target genes as well as Tamoxifen responsive genes that are altered in the absence of BASP1. Overall design: Total mRNA sequencing analysis of MCF7 cells treated with either siRNA against BASP1 or negative control siRNA, with and without Tamoxifen treatment. Each experiment was performed in triplicate.

Publication Title

BASP1 interacts with oestrogen receptor α and modifies the tamoxifen response.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact