refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1551 results
Sort by

Filters

Technology

Platform

accession-icon GSE39088
Down-regulation of Interferon signature in systemic lupus erythematosus patients by active immunization with Interferon alpha-Kinoid
  • organism-icon Homo sapiens
  • sample-icon 139 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We performed a phase I/II, randomized, double-blind, placebo-controlled dose-escalation study to examine the safety, immunogenicity, and biological effects of active immunization with interferon alpha-Kinoid (IFN-K) in systemic lupus erythematosus (SLE) patients. Women 18-50 years of age with mild to moderate SLE were immunized with three (n=10) or four doses (n=9) of 30, 60, 120, 240 microgram IFN-K or saline.

Publication Title

Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Treatment, Race

View Samples
accession-icon GSE57802
Transcriptome Profiling of patients with 16p11.2 rearrangements
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

The 600kb BP4-BP5 16p11.2 CNV (copy number variant) is associated with neuroanatomical, neurocognitive and metabolic disorders. These recurrent rearrangements are associated with reciprocal phenotypes such as obesity and underweight, macro- and microcephaly, as well as autism spectrum disorder (ASD) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal CNVs in 16p11.2.

Publication Title

A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon E-MEXP-325
Transcription profiling of human samples from intervention study with two doses of iron (as ferrous gluconate via intestinal perfusion) to study the effect on genome wide gene expression in the small intestine
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Human intervention study with two doses of iron (as ferrous gluconate via intestinal perfusion) to study the effect on genome-wide gene expression in the small intestine, in order to obtain detailed information about intestinal transcriptomics in vivo.

Publication Title

Gene expression in human small intestinal mucosa in vivo is mediated by iron-induced oxidative stress.

Sample Metadata Fields

Sex, Disease, Disease stage, Subject

View Samples
accession-icon GSE19238
Expression data for 2 obese subjects from the SibPair cohort with a deletion on 16p11.2
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We report a highly-penetrant form of obesity, initially observed in 31 heterozygous carriers of a 593kb or larger deletion at 16p11.2 from amongst subjects ascertained for cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16053 individuals from 8 European cohorts; such deletions was absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (p = 6.4x10-8, OR = 43). These findings highlight a promising strategy for identifying missing heritability in obesity and other complex traits, in which insights from rare extreme cases can be used to elucidate the basis for more common phenotypes.

Publication Title

A new highly penetrant form of obesity due to deletions on chromosome 16p11.2.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE27833
Notch signaling in HSC
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27811
Expression data from LSK WT, GMP WT and GMP NcstnKO
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27799
Expression data from LSK WT and LSK N1-C+
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27794
Expression data from LSK WT and LSK NcstnKO
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE43065
Short chain fatty acids induce ANGPTL4 via PPAR
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Angiopoietin-like protein 4 (ANGPTL4, also referred to as Fiaf) has been proposed as circulating mediator between the gut microbiota and fat storage in adipose tissue. Very little is known about mechanisms of regulation of ANGPTL4 in the colon. Here we show that transcription and subsequent secretion of ANGPTL4 in human T84 and HT-29 colonocytes is highly induced by physiological concentrations of products of bacterial fermentation, the short chain fatty acids (SCFA). Induction of ANGPTL4 by SCFA cannot be mimicked by the histone deacetylase inhibitor Trichostatin A. SCFA induce ANGPTL4 by activating the nuclear receptor PPAR, as shown by use of PPAR antagonist, PPAR knock-down, and transactivation assay, which shows activation of PPAR but not PPAR and PPAR. At concentrations required for PPAR activation and ANGPTL4 induction in colonocytes, SCFA do not stimulate PPAR in mouse 3T3-L1 and human SGBS adipocytes, suggesting that SCFA act as selective PPAR modulators (SPPARM), which is supported by coactivator peptide recruitment assay and structural modelling. Consistent with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin was associated with induction of PPAR target genes and pathways in the colon, as shown by microarray and subsequent gene set enrichment analysis. It can be concluded that 1) SCFA potently stimulate ANGPTL4 synthesis in human colonocytes; 2) SCFA transactivate and bind to PPAR by serving as selective PPAR modulators. Our data point to activation of PPAR as a novel mechanism of gene regulation by SCFA in the colon.

Publication Title

Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE40706
Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colonocytes by selective PPAR modulation
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Angiopoietin-like protein 4 (ANGPTL4, also referred to as Fiaf) has been proposed as a circulating mediator between the gut microbiota and fat storage in adipose tissue. Very little is known about the mechanisms of regulation of ANGPTL4 in the colon. Here we show that transcription and subsequent secretion of ANGPTL4 in human T84 and HT-29 colonocytes is highly induced by physiological concentrations of products of bacterial fermentation, the short-chain fatty acids. Short-chain fatty acids induce ANGPTL4 by activating the nuclear receptor PPAR, as shown by microarray, transactivation assays, coactivator peptide recruitment assay, and use of PPAR antagonist. At concentrations required for PPAR activation and ANGPTL4 induction in colonocytes, SCFA do not stimulate PPAR in mouse 3T3-L1 and human SGBS adipocytes, suggesting that SCFA act as selective PPAR modulators (SPPARM), which is supported by coactivator peptide recruitment assay and structural modelling. It can be concluded that 1) SCFA potently stimulate ANGPTL4 synthesis in human colonocytes, and 2) SCFA transactivate and bind to PPAR by serving as selective PPAR modulators. Our data point to activation of PPAR as a novel mechanism of gene regulation by SCFA in the colon.

Publication Title

Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact