refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 67 results
Sort by

Filters

Technology

Platform

accession-icon GSE23339
Gene expression profiles of endometriosis
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

Endometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we carried out transcriptome:microRNAome analysis of endometriomas and eutopic endometrium, using gene expression arrays and next generation small RNA sequencing technology.

Publication Title

Functional microRNA involved in endometriosis.

Sample Metadata Fields

Disease, Disease stage, Subject

View Samples
accession-icon GSE16709
Ovarian serous cancer
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina HumanWG-6 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers.

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
accession-icon GSE16708
Gene expression analysis of ovarian serous adenocarcinoma cell lines and tumors
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip, Illumina HumanHT-12 V3.0 expression beadchip

Description

A variety of human cancers demonstrate alterations in microRNA expression. We hypothesized that regulatory defects in microRNAs play a central early role in organizing the molecular changes involved in ovarian cancer (OvCa). Using both gene arrays and deep sequencing, we comprehensively profiled mRNA and microRNA expression, respectively, in human serous epithelial OvCa cell lines, serous tumors, and short-term primary cultures of normal ovarian surface epithelium (NOSE). We expected that over-expression of a specific microRNA would lead to lower expression of its mRNA targets, and under-expression of a specific microRNA would lead to higher expression of its target genes. Using our expression data in conjunction with established in silico algorithms, we found putative microRNA:mRNA functional pairs.

Publication Title

Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers.

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
accession-icon GSE16700
Gene expression analyses of mir-31 overexpression in ovarian serous cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

A variety of human cancers demonstrate alterations in microRNA expression. We hypothesized that regulatory defects in microRNAs play a central early role in organizing the molecular changes involved in ovarian cancer (OvCa). Using both gene arrays and deep sequencing, we comprehensively profiled mRNA and microRNA expression, respectively, in human serous epithelial OvCa cell lines, serous tumors, and short-term primary cultures of normal ovarian surface epithelium (NOSE). We expected that over-expression of a specific microRNA would lead to lower expression of its mRNA targets, and under-expression of a specific microRNA would lead to higher expression of its target genes. Using our expression data in conjunction with established in silico algorithms, we found putative microRNA:mRNA functional pairs. Furthermore, gene expression profiles were taken of serous cultures having functional knockdown or over-expression of specific microRNAs of interest. Over-expression of mir-31 (found under-expressed in serous OvCa) resulted in down-regulation in vitro of a significant number of the in silico predicted mir-31 target genes.

Publication Title

Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19156
Air-liquid interfacial biofilm vs planktonic S. cerevisiae cells
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Goal was to identify yeast genes whose expression changed as a function of the shift from growth in bulk culture to growth in an air-liquid interfacial biofilm.

Publication Title

Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP131463
Sequencing of Caenorhabditis elegans wildtype strain (N2) treated with T25B9.1 RNAi for 5 days after L4 larvae stage.
  • organism-icon Caenorhabditis elegans
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Comparison of gene expression profiles from C. elegans wildtype strain (N2) treated with L4440 and T25B9.1 RNAi for 5 days after L4 larvae stage. Jena Centre for Systems Biology of Ageing - JenAge (ww.jenage.de) Overall design: 6 samples in 2 groups: N2, L4440 5 days (3 Samples); N2, T25B9.1 5 days (3 Samples)

Publication Title

Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP066090
Subtypes of HPV-positive head and neck cancers are associated with HPV characteristics, copy number variations, PIK3CA mutation, and pathway signatures. [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: There is substantial heterogeneity within the human papillomavirus (HPV) positive head and neck cancer (HNC) tumors that predispose them to different outcomes, however this subgroup is poorly characterized due to various historical reasons. Experimental Design: we perform unsupervised gene expression clustering on well-annotated HPV(+) HNC samples from two cohorts ( 84 total primary tumors), as well as 18 HPV(-) HNCs, to discover subtypes, and begin to characterize the differences between the subtypes in terms of their HPV characteristics, pathway activity, whole-genome somatic copy number variations and mutation frequencies. Results: We identified two distinctive HPV(+) subtypes by unsupervised clustering. Membership in the HPV(+) subtypes correlates with genic viral integration status, E2/E4/E5 expression levels and the ratio of spliced to full length HPV oncogene E6. The subtypes also show differences in copy number alterations, in particular the loss of chr16q and gain of chr3q, PIK3CA mutation, and in the expression of genes involved in several biological processes related to cancer, including immune response, oxidation-reduction process, and keratinocyte and mesenchymal differentiation. Conclusion: Our characterization of two subtypes of HPV(+) tumors provides valuable molecular level information in relation to the alternative paths to tumor development and to that of HPV(-) HNCs. Together, these results will shed light on stratifications of the HPV(+) HNCs and will help to guide personalized care for HPV(+) HNC patients. Overall design: 36 head and neck primary tumors (18 HPV+ and 18 HPV-) and their matched blood samples were collected and genotyped by Illumina OmniExpress SNP array. RNA-seq was also performed on the same set of tumor samples.

Publication Title

Significant association between host transcriptome-derived HPV oncogene E6* influence score and carcinogenic pathways, tumor size, and survival in head and neck cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP021462
Deep sequencing of endogenous mRNA from Caenorhabditis elegans in the presence and absence of arsenite
  • organism-icon Caenorhabditis elegans
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Background: Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors, and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co-exposure to ROS scavengers prevents the lifespan-extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. The RNA-seq data comprises 2 biological replicates for worms exposed to 100nM Arsenite 48h after L4 and 2 biological replicates of the same age as controls Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 4 samples: 2 mRNA profiles of C.elegans 48h after L4 exposed to Arsenite; 2 mRNA profiles of C.elegans 48h after L4 as controls (H20). The N2 wild type (var. Bristol) strain was used.

Publication Title

Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP062096
Transcriptome analysis of sexual dimorphism in the somatic gonadal precursor cells of Caenorhabditis elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Caenorhabditis elegans somatic gonad was the first organ to have its cell lineage determined, and the gonadal lineages of the two sexes differ greatly in their pattern of cell divisions, cell migration and cell types. Despite much study, the genetic pathways that direct early gonadal development and establish its sexual dimorphism remain largely unknown, with just a handful of regulatory genes identified from genetic screens. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in Z1/Z4 or Z1/Z4 daughter cells in each sex at the onset of somatic gonadal sexual differentiation. For comparison, transcripts were identified in whole animals at both time points. Pairwise comparisons of samples identified several hundred gonad-enriched transcripts, including most known Z1/Z4-enriched mRNAs, and reporter analysis confirmed the effectiveness of this approach. Prior to the Z1/Z4 division few sex-biased Z1/Z4 transcripts were detectable, but less than six hours later, we identified more than 250 sex-biased transcripts in the Z1/Z4 daughters, of which about a third were enriched in the somatic gonad cells compared to cells from whole animals. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in these cells around the time of the first Z1/Z4 division. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in Z1/Z4 or their daughters. Our data suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. Overall design: 20 total sample: two time points, two sexes, and gonadal cells or whole animals. The earlier time point was collected in triplicate and was harvested 9.5 hours after starved, hatched L1s were fed. The later time point was collected in duplicate and was harvested 15 hour after starved, hatched L1 were fed. Replicates of either dissociated whole animals or gonadal cells (Z1/Z4 or Z1/Z4 daughter) from both male and hermaphrodites were harvested for each time point.

Publication Title

Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts.

Sample Metadata Fields

Sex, Specimen part, Subject, Time

View Samples
accession-icon GSE146725
Expression data from Canton-S and D18 adult flies
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Even after decades of living in the same laboratory environment two Drosophila melanogaster strains originating from North America (Canton-S) and Central Russia (D18) demonstrate a few differentially expressed genes some of which may be important for local adaptation (e.g. genes responsible for insecticide resistance). Genes with different level of expression between Canton-S and D18 strains belong to important metabolic pathways, for instance energy metabolism, carbohydrate metabolic process, locomotion, body temperature rhythm regulation and tracheal network architecture.

Publication Title

Transcriptome analysis of <i>Drosophila melanogaster</i> laboratory strains of different geographical origin after long-term laboratory maintenance.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact