refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 83 results
Sort by

Filters

Technology

Platform

accession-icon GSE79316
Response to PI3K/mTOR dual inhibition in Glioma initiating cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The PI3K/mammalian target of rapamycin (mTOR) pathway is dysregulated in over 50% of human GBM but remains a challenging clinical target. Inhibitors against PI3K/mTOR mediators have limited clinical efficacy as single agents. Gene expression profiling after PI3K/mTOR inhibition treatment was analyzed by Affymetrix microarrays.

Publication Title

MSK1-Mediated β-Catenin Phosphorylation Confers Resistance to PI3K/mTOR Inhibitors in Glioblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP048595
m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency Towards Differentiation (3p-Seq)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here we identify Mettl3, an N6-Methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: 3'' polyA RNA-sequencing (equivalent to Digital Gene Expression) measured in mouse Embryonic Stem Cells (ESCs) and mouse Embriod bodies (EBs) 0,4 & 8 hours after treatment with Actinomycin which halts transcription. Measured in both WT and Mettl3-KO cells.

Publication Title

Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048598
m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency Towards Differentiation (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: polyA RNA-seq was measured in mouse embryonic stem cells (ESCs) and embroid bodies (EBs), each in WT and in Mettl3-KO cell lines. RNA-seq was measured also from WT mouse embronic fibroblasts (MEF). 3 biological replicates are available from ESCs and 2 from EBs. Replicate C in ESCs was measured alongside protein levels (SILAC) and was used for the analysis of that assay.

Publication Title

Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048597
m6A mRNA Methylation Facilitates Resolution of Naïve Pluripotency Towards Differentiation (Ribo-seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Naïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here we identify Mettl3, an N6-Methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: Ribosome footprint (Ribo-Seq) was measured from mouse embryonic stem cells and mouse embriod bodies, in WT and Mettl3-KO cell lines.

Publication Title

Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE90121
Identification Of Neuroblastoma Metastasis Associated Genes
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Metastatic relapse is the major cause of death in neuroblastoma (NB), yet there are no therapies to specifically target metastases. To understand the molecular mechanisms mediating NB metastasis, we developed a mouse model using intracardiac injection and in vivo selection to isolate metastatic subpopulations that exhibited a higher propensity for bone and central nervous system metastases. Gene expression profiling revealed two distinct subtypes, primary and metastatic, with differential regulation of 412 genes and multiple pathways including CADM1, SPHK1, and YAP/TAZ whose expression independently predicted survival. Loss- and gain-of-function experiments with these genes demonstrated a rescue of metastatic phenotypes in multiple NB cell lines in vitro or in vivo. Treatment with the compounds SKI II and Verteporfin that target SPHK1 and YAP/TAZ, respectively, inhibited NB metastasis in vivo. In addition, using gene expression profiling from the metastatic subpopulations, a gene signature (MET-75) was identified that predicts NB survival of patients with metastatic disease. This model therefore identifies genes regulating metastasis and candidate therapeutics for metastatic NB

Publication Title

A Metastatic Mouse Model Identifies Genes That Regulate Neuroblastoma Metastasis.

Sample Metadata Fields

Disease

View Samples
accession-icon SRP067378
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis (PAGODA)
  • organism-icon Mus musculus
  • sample-icon 557 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The extent of transcriptional diversity in mouse NPCs is likely to be influenced by a variety of unexamined factors that include programmed cell death, genomic mosaicism as well as a variety of “environmental” influences such as changes in exposure to signaling lipids. We therefore used scRNA-seq to assess a cohort of cortical NPCs from an embryonic mouse. We demonstrate that PAGODA (Pathway And Geneset OverDispersion Analysis) effectively recovers the known neuroanatomical and functional organization of NPCs, identifying multiple aspects of transcriptional heterogeneity within the developing mouse cortex that are difficult to discern by the existing heterogeneity analysis approaches. Overall design: Examination of mouse NPC transcriptional heterogeneity via single cell RNA-seq

Publication Title

Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE15240
Gene expression in laboratory models and primary tumors in Small Cell Lung Cancer
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression was measured on the Affymetrix platform in primary xenografts, xenograft-derived cell lines, secondary xenografts, normal lung, and primary tumors obtained from chemotherapy naive Small Cell Lung Cancer (SCLC). The SCLC primary xenografts were serially propagated in vivo in immunodeficient mice. Cell lines were derived from each xenograft and grown for 6 months using conventional tissue culture conditions. Secondary xenografts were obtained from cell cultures by re-implantation in immunodeficient mice. Such SCLC laboratory models were analyzed along with conventional SCLC cell lines and the derivative secondary xenografts, with normal lung and primary tumors, to assess irreversible gene expression changes induced by culturing conditions.

Publication Title

A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro.

Sample Metadata Fields

Disease, Disease stage, Cell line

View Samples
accession-icon GSE11589
Gene expression analysis of embryo-derived stromal cell lines
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Hematopoiesis occurs in a microenviroenment in which stromal cells are prominent. Stromal cells have been shown to maintain stem cell behaviour of hematopoietic stem cells. We derived several different stromal cell lines from midgestation embryos which will, or will not maintain hemetopoietic stem cells in cultures.

Publication Title

Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150322
RNA Sequencing to Identify Regulators of Axon Regeneration in Mouse Retinal Ganglion Cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: The goals of this study are to identify the transcriptional profile of retinal ganglion cells (RGCs) with the capacity to regenerate an axon, and contrast this profile with the profile of RGCs that cannot regenerate an axon. Methods: See sample pages for protocols for tissue preparation, RNA extraction and purification, library construction and data processing. Results: RNA from the 12 samples was sequenced to an average depth of 42 million reads. Genes were considered expressed if a gene had an expression of 1 count per million in 3 of the 12 samples. There were 13,406 genes that met this criterion. Conclusions: Our study represents the first analysis by NGS of highly-purified RGCs in the context of axonal injury Overall design: RGC mRNA profiles of melanopsin RGCs and ON-OFF Direction Selective Ganglion Cells (ooDSGCs) were generated by deep sequencing in triplicate, using Illumina HiSeq 2500.

Publication Title

Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE53894
G9a-dependent gene expression in mouse AML cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The methyltransferase G9a was found to play a role in the disease progression of a murine model of AML.

Publication Title

The methyltransferase G9a regulates HoxA9-dependent transcription in AML.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact