refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 985 results
Sort by

Filters

Technology

Platform

accession-icon SRP071332
Expression profiling of IL-13 stimulated PBMCs with and without an IL-13R antagonist
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

This experiment aims to identify the biological pathways and diseases associated with the cytokine Interleukin 13 (IL-13) using gene expression measured in peripheral blood mononuclear cells (PBMCs). Overall design: The experiment comprised of samples obtained from 3 healthy donors. The expression profiles of in vitro IL-13 stimulation were generated using RNA-seq technology for 3 PBMC samples at 24 hours. The transcriptional profiles of PBMCs without IL-13 stimulation were also generated to be used as controls. An IL-13R-alpha antagonist (Redpath et al. Biochemical Journal, 2013) was introduced into IL-13 stimulated PBMCs and the gene expression levels after 24h were profiled to examine the neutralization of IL-13 signaling by the antagonist.

Publication Title

Combining multiple tools outperforms individual methods in gene set enrichment analyses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP172691
Single cell RNA sequencing of V?4 and V?6 ?dT cells from different tissue
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

IL17-producing ?d T cells (?d T17) mainly develop in the prenatal phase and persist as long-living self-renewing effector cell in all kind of tissues. They express polyclonal T-cell receptors (TCR), comprising public V?4+ and V?6+ TCRs with germline-like rearrangements. In particular, V?6+ T cells have recently been found in a variety of tissues including enthesis, gingiva or skin. However, their exchange between tissues and the mechanisms of tissue-specific adaptation and residency remain poorly understood. Here, we profiled V?6+ T cells isolated from thymus, peripheral lymph nodes (pLN) and skin through single-cell RNA-seq technology and compared those to V?4+ T cells. Our data demonstrated that V?6+ T cells formed highly homogenous cell populations that could be separated by tissue-specific gene expression signatures. Overall design: Sort V?4 and V?6 ?dT cells from peripheral lymph nodes, ear skin and thymus, then do 3'-RNA single cell sequencing (10x genomics).

Publication Title

Single-Cell Transcriptomics Identifies the Adaptation of Scart1<sup>+</sup> Vγ6<sup>+</sup> T Cells to Skin Residency as Activated Effector Cells.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE7669
Synovial fibroblasts, RA versus OA
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

mRNA expression levels in synovial fibroblasts in 6 rheumatoid arthritis patients versus 6 osteoarthritis patients.

Publication Title

Constitutive upregulation of the transforming growth factor-beta pathway in rheumatoid arthritis synovial fibroblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061407
Group 3 innate lymphoid cells continuously require the transcription factor GATA3 after commitment
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

GATA3 is indispensable for the development of all IL-7Ra-expressing innate lymphoid cells (ILCs) and maintenance of type 1 ILCs (ILC1s) and type 2 ILCs (ILC2s). However, the importance of low GATA3 expression in type 3 ILCs (ILC3s) is still elusive. Here, we report that GATA3 regulates homeostasis of ILC3s by controlling IL-7Ra expression. In addition, GATA3 is critical for the development of NKp46+ ILC3 subset partially through regulating the balance between T-bet and ROR?t. Genome-wide analyses indicate that while GATA3 positively regulates CCR6+ and NKp46+ ILC3 subset-specific genes in respective lineages, it negatively regulates CCR6+ ILC3-specific genes in NKp46+ ILC3s. Furthermore, GATA3 regulates IL-22 production in both CCR6+ and NKp46+ ILC3s. Thus, low GATA3 expression is critical for the development and function of ILC3 subsets. Overall design: To identify GATA3 regulated genes in total ILC3s with RNA-Seq; To identify unique genes expressed by CCR6+ ILC3 or NKp46+ ILC3 and GATA3 regulated genes within these two ILC3 subsets with RNA-Seq; To identify GATA3 direct binding sites in ILC3s, ILC2s and Th2 cells with ChIP-Seq.

Publication Title

Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12214
Microcystin Genomic Effects on Zebrafish Larvae
  • organism-icon Danio rerio
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Zebrafish (Danio rerio) were obtained from the Zebrafish Research Facility maintained in the Center for Environmental Biotechnology at the University of Tennessee. Fish husbandry, spawning, and experimental procedures were conducted with approval from the University of Tennessee Institutional Animal Care and Use Committee (Protocol #1690-1007). Water for holding fish and conducting experiments (hereafter referred to as fish water) consisted of MilliQ water (Millipore, Bedford, MA) with ions added: 19 mg/L NaHCO3, 1 mg/L sea salt (Instant Ocean Synthetic Sea Salt, Mentor, OH), 10 mg/L CaSO4, 10 mg/L MgSO4, 2 mg/L KCl. Embryos were obtained by spawning adult fish with no history of contaminant exposure. Fertilization of embryos took place at the same time ( 15 min.), such that larvae used in experiments were of similar age at the time of exposure. All activities (maintenance of adult fish, spawning, and experiments) were conducted in an environmental chamber with a temperature of 27 1 C and 14:10h light:dark photoperiod.

Publication Title

Global gene expression profiling in larval zebrafish exposed to microcystin-LR and microcystis reveals endocrine disrupting effects of Cyanobacteria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE67662
FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Forkhead Box, FOXO1 and FOXO3, transcription factors regulate multiple functions in mammalian cells. Selective inactivation of the Foxo1 and Foxo3 genes in murine ovarian granulosa cells severely impairs follicular development and apoptosis causing infertility, and as shown herein, granulosa cell tumor (GCT) formation. Coordinate depletion of the tumor suppressor Pten gene in the Foxo1/3 strain enhanced the penetrance and onset of GCT formation

Publication Title

FOXO1/3 and PTEN Depletion in Granulosa Cells Promotes Ovarian Granulosa Cell Tumor Development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP060605
Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

A greater understanding of the molecular pathways that underpin the unique human hematopoietic stem and progenitor cell (HSPC) self-renewal program will improve strategies to expand these critical cell types for regenerative therapies. The post-transcriptional mechanisms guiding HSPC fate during ex vivo expansion have not been closely investigated. Using shRNA-mediated knockdown, we show that the RNA-binding protein (RBP) Musashi-2 (MSI2) is required for human HSPC self-renewal. Conversely, when overexpressed, MSI2 induces multiple pro-self-renewal phenotypes, including significant ex vivo expansion of short- and long-term repopulating cells through direct attenuation of aryl hydrocarbon receptor (AHR) signaling. Using a global analysis of MSI2-RNA interactions, we determined that MSI2 post-transcriptionally downregulates canonical AHR pathway components in cord blood HSPCs. Our study provides new mechanistic insight into RBP-controlled RNA networks that underlie the self-renewal process and provides evidence that manipulating such networks can provide a novel means to enhance the regenerative potential of human HSPCs expanded ex vivo. Overall design: 4 samples were used for RNA-seq (4 biological duplicate) including 2 sets of control samples (irrelvant shRNA kncok-downs)

Publication Title

Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP150419
Haemopedia: Human Haematopoietic Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 84 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Database of gene expression in different haematopoietic cell types at haemosphere.org Overall design: Comparison of gene expression in different haematopoietic cell types

Publication Title

Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE76966
G-CSF receptor targeting in inflammatory arthritis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

G-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. We developed a neutralizing monoclonal antibody to the murine G-CSF receptor (G-CSFR), which antagonizes binding of murine G-CSF and inhibits G-CSFR signalling. Anti-G-CSFR rapidly halts the progression of established disease in collagen antibody-induced arthritis (CAbIA). Neutrophil accumulation in joints is inhibited, without rendering animals neutropenic, suggesting an effect on homing to inflammatory sites. Neutrophils in the blood and arthritic joints of anti-G-CSFR treated mice show alterations in cell adhesion receptors, while anti-G-CSFR suppresses local production of proinflammatory cytokines and chemokines known to drive tissue damage. Our aim in this study was to use differential gene expression analysis of joint and blood neutrophils to more thoroughly understand the effect of G-CSFR blockade on the inflammatory response following anti-G-CSFR therapy in CAbIA.

Publication Title

Therapeutic Targeting of the G-CSF Receptor Reduces Neutrophil Trafficking and Joint Inflammation in Antibody-Mediated Inflammatory Arthritis.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE155471
Timing of tumor initation predicts medulloblastoma heterogeneity, stem cell composition and probability of relapse [array]
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Patients with medulloblastoma are typically treated with a narrow range of therapies, but may experience widely divergent outcomes; 80-90% become long-term survivors while 20% develop incurable recurrence. Transcriptomic profiling has identified four subgroups with different recurrence risks, but outcomes remain variable for individual patients within each subgroup. To gain new insight into why patients with similar-appearing tumors have variable outcomes, we examined how the timing of tumor initiation effects medulloblastomas triggered by a single, common driver mutation. We genetically-engineered mice to express an oncogenic Smo allele starting early in development in the broad lineage of neural stem cells, or later, in the more committed lineage of cerebellar granule neuron progenitors. Both groups developed medulloblastomas and no other tumors. We compared medulloblastoma progression, response to therapy, gene expression profile and cellular heterogeneity, determined by single cell transcriptomic analysis (scRNA-seq). The average transcriptomic profiles of the tumors were similar. However, stem cell-triggered medulloblastomas progressed faster, contained more OLIG2-expressing tumor stem cells, and consistently showed radioresistance. In contrast, progenitor-triggered MBs progressed slower, lost stem cell character over time and were radiosensitive. Progenitor-triggered medulloblastomas also contained more diverse stromal populations, including tumor-associated macrophages, indicating that the timing of oncogenesis affected the subsequent interactions between the tumor and microenvironment. Our findings show that developmental events in tumorigenesis may be impossible to infer from transcriptomic profile, but while remaining cryptic can nevertheless influence tumor composition and the outcome of therapy. Precise understanding of medulloblastoma pathogenesis and prognosis requires supplementing transcriptomic data with biomarkers of cellular heterogeneity.

Publication Title

Cryptic developmental events determine medulloblastoma radiosensitivity and cellular heterogeneity without altering transcriptomic profile.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact