refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 56 results
Sort by

Filters

Technology

Platform

accession-icon GSE33262
Expression data from pig uterus in response to embryos at blastocyst satge and oocytes
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. To advance our understanding of the process by which a foreign blastocyst is accepted by the maternal endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response(s) of the maternal tract towards the embryo during the earliest stages of pregnancy.

Publication Title

Early developing pig embryos mediate their own environment in the maternal tract.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE47139
Expression data from pig oviduct in response to X or Y chromosome bearing spermatozoa
  • organism-icon Sus scrofa
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

The objective of the present study is to investigate if females have the ability to recognise X or Y chromosome bearing spermatozoa and present a different response to different spermatozoa.

Publication Title

The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11927
RCV02 (cadA deficient) v wild-type enterohemorrhagic E. coli (EHEC)
  • organism-icon Escherichia coli
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Adherence of pathogenic Escherichia coli strains to intestinal epithelia is essential for infection. For enterohemorrhagic E. coli (EHEC) serotype O157:H7, we have previously demonstrated that multiple factors govern this pathogens adherence to HeLa cells (39). One of these factors is CadA, a lysine decarboxylase, and this protein has been proposed to negatively regulate virulence in several enteric pathogens. In the case of EHEC strains, CadA modulates expression of the intimin, an outer membrane adhesin involved in pathogenesis. Here, we experimentally inactivated cadA in O157:H7 strain 86-24 to investigate the role of this gene in EHEC adhesion to tissue culture monolayers, global gene expression patterns, and colonization of the infant rabbit intestine. As expected, the cadA mutant did not possess lysine decarboxylation activity and was hyper-adherent to tissue-culture cells. Adherence of the cadA mutant was nearly 2-fold greater than that of the wt and complementation of the cadA defect reduced adherence back to wt levels. Furthermore, the cadA mutant affected the expression of intimin protein. Disruption of the eae gene (encoding the intimin protein) in the cadA mutant significantly reduced its adherence to tissue-culture cells. However, adherence of the cadA eae double mutant was greater than that of an 86-24 eae mutant, suggesting that the enhanced adherence of the cadA mutant is not entirely attributable to enhanced expression of intimin in this background. Gene array analysis revealed that the cadA mutation significantly altered EHEC gene expression patterns; expression of 1332 genes was down-regulated and 132 genes up-regulated in the mutant compared to the wild type strain. Interestingly, the gene expression variation shows an EHEC-biased gene alteration including intergenic regions. Two putative adhesins: flagella and F9 fimbriae were up-regulated in the cadA mutant, suggestive of their association with adherence in absence of the Cad regulatory mechanism. Remarkably, in the infant rabbit model, the cadA mutant out-competed the wild type strain in the ileum but not in the cecum or mid-colon, raising the possibility that CadA negatively regulates EHEC pathogenicity in a tissue-specific fashion.

Publication Title

CadA negatively regulates Escherichia coli O157:H7 adherence and intestinal colonization.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35972
TOV112D cells treated with NSC319726
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tumor growth in a 175-allele specific mutant p53 dependent manner. This activity depends upon the zinc ion chelating properties of the compound as well as redox changes. These data identify NSC319726 as a p53R175 mutant reactivator and as a lead compound for p53 targeted drug development.

Publication Title

Allele-specific p53 mutant reactivation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE77515
Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A in cisplatin-resistant breast cancer TM and cisplatin sensitize resistant breast cancer.
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Chemotherapy resistance presents a major hurdle for cancer treatment. We proposed to identify the molecular changes through which breast cancer cells evolve resistance to conventional treatment, here cisplatin, so targeted therapy can be developed. Candidate approach RNAi screening was combined with cisplatin treatment in order to identify molecular pathways conferring survival advantages. The screening identified ATP7A, a copper transport ATPase responsible for the intercellular movement and sequestering of cisplatin, as a therapeutic target. Copper chelation with tetrathiomolybdate (TM) targets ATP7A. TM in combination with cisplatin sensitized drug-resistant breast cancer cells. Allograft and xenograft models in aythymic mice treated with TM/cisplatin combination therapy inhibited tumor growth and increased survival compared with monotreated mice. Examination of the molecular effects of TM on cisplatin efficacy in drug-resistant tumors revealed reduced levels of APT7A, reduced cisplatin sequestering by ATP7A and increased nuclear availability of cisplatin. Further, we showed that TM treatment combined with cisplatin reduced the half-life of ATP7A in human breast cancer cell lines. This finding offered the potential to combat drug platinum-resistant tumors and sensitize patients to conventional breast cancer treatments by identifying and targeting resistant tumors unique molecular adaptations.

Publication Title

Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE65435
MiR-30e in Aortic Smooth Muscle Cells and Bone Marrow Mesenchymal Stem Cells
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE65432
MiR-30e in Aortic Smooth Muscle Cells and Bone Marrow Mesenchymal Stem Cells [Experiment 2]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MiR-30e represses the osteogenic program in mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs) by targeting IGF2, and drives their differentiation into adipogenic or smooth muscle lineage, respectively.

Publication Title

miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE65431
MiR-30e in Aortic Smooth Muscle Cells and Bone Marrow Mesenchymal Stem Cells [Experiment 1]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MiR-30e represses the osteogenic program in mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs) by targeting IGF2, and drives their differentiation into adipogenic or smooth muscle lineage, respectively.

Publication Title

miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE65434
MiR-30e in Aortic Smooth Muscle Cells and Bone Marrow Mesenchymal Stem Cells [Experiment 3]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MiR-30e represses the osteogenic program in mesenchymal stem cells (MSCs) and smooth muscle cells (SMCs) by targeting IGF2, and drives their differentiation into adipogenic or smooth muscle lineage, respectively.

Publication Title

miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE23602
Analysis of cohesin-dependent gene regulation in fission yeast
  • organism-icon Schizosaccharomyces pombe
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

In addition to its well-know function in chromosome segregation, increasing evidence implicates cohesin in the control of gene expression. It has been previously reported that inactivation of the cohesin loader Mis4 in G1-arrested cells leads to the dissociation of cohesin from chromatin. We exploited this experimental situation to ask whether this loss of cohesin would affect gene expression on a genome-wide scale.

Publication Title

Role for cohesin in the formation of a heterochromatic domain at fission yeast subtelomeres.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact