refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1805 results
Sort by

Filters

Technology

Platform

accession-icon SRP061689
EHMT1 and EHMT2 inhibition induce fetal hemoglobin expression [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Using UNC0638 and genetic assays to inhibit EHMT1/2 and derepress fetal hemoglobin in adult hematopoietic cells. Overall design: RNA-Seq in primary adult human erythroid cells treated with UNC0638 or the vehicle control (DMSO) in biological triplicates.

Publication Title

EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32515
Caspase-1 deficiency reduces intestinal and hepatic triglyceride-rich lipoprotein secretion
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Background and Aims: Inflammasome-mediated caspase-1 activity regulates the maturation and release of the pro-inflammatory cytokines interleukin (IL)-1 and IL-18. Recently, we showed that caspase-1 deficiency strongly reduces high fat diet-induced adiposity although the mechanism is still unclear. We now aimed to elucidate the mechanism by which caspase-1 deficiency reduces modulates resistance to high fat diet-feeding fat accumulation in adipose tissue by focusing on the role of caspase-1 in the regulation of triglyceride (TG)-rich lipoprotein metabolism. Methods: Caspase-1 deficient and wild-type mice (both C57Bl/6 background) were used to determine postprandial TG kinetics, intestinal TG absorption, VLDL-TG production as well as TG clearance, all of which strongly contribute to the supply of TG for storage in adipose tissue. Micro-array and qPCR analysis were used to unravel intestinal and hepatic metabolic pathways involved. Results: Caspase-1 deficiency reduced the postprandial response to an oral lipid load, while tissue specific clearance of TG-rich lipoproteins was not changed. Indeed, an oral olive oil gavage containing [3H]TG revealed that caspase-1 deficiency significantly decreased intestinal chylomicron-TG production and reduced the uptake of [3H]TG-derived FA by liver, muscle, and adipose tissue. Similarly, caspase-1 deficiency reduced the hepatic VLDL-TG production without reducing VLDL-apoB production, despite an elevated hepatic TG content. Pathway analysis revealed that caspase-1 deficiency reduces intestinal and hepatic expression of genes involved in lipogenesis. Conclusions: Absence of caspase-1 reduces assembly and secretion of TG-rich lipoproteins, thereby reducing the availability of TG-derived FA for uptake by peripheral organs including adipose tissue. We anticipate that caspase-1 represents a novel link between innate immunity and lipid metabolism.

Publication Title

Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE16659
Expression data of HGF/cMET pathway in prostate cancer DU145 cell line
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

DU145 prostate cancer cells were treated with 25 ng/ml hepatocyte growth factor (HGF) or vehicle for 2, 8, or 24 hours. HGF stimulates the cMET protein, a tyrosine kinase transmembrane protein.

Publication Title

Activation of c-MET induces a stem-like phenotype in human prostate cancer.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon SRP186406
A temporal proteogenomic atlas of HCV-host interactions unravels cell circuits driving viral and metabolic liver disease.
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Background and aims: Hepatitis C virus (HCV) infection is a major cause of liver disease including steatosis, fibrosis and liver cancer. Viral cure cannot fully eliminate the risk of disease progression and hepatocellular carcinoma (HCC) in advanced liver disease. The mechanisms for establishment of infection, liver disease progression and hepatocarcinogenesis are only partially understood. To address these questions, we probed the functional proteogenomic architecture of HCV infection within a hepatocyte-model. Methods: Time-resolved HCV infection of hepatocyte-like cells was analyzed by RNA sequencing, proteomics, metabolomics, and leveraged by integrative genomic analyses. Using differential expression, gene set enrichment analyses, and protein-protein interaction mapping we identified pathways relevant for liver disease pathogenesis that we validated in livers of 216 cirrhotic patients with HCV. Results: We uncovered marked changes in the protein expression of gene sets involved in innate immunity, metabolism and hepatocarcinogenesis. In infected cells, HCV enhances glucose metabolism and creates a Warburg-like shift of the lactate flux. HCV infection impaired the formation of peroxisomes -organelles required for long-chain fatty acid oxidation- causing intracellular fatty acid accumulation, which is a hallmark of non-alcoholic fatty liver disease (NAFLD). Ex vivo studies confirmed perturbed peroxisomes and revealed an association of hepatic catalase expression with clinical outcomes and phenotypes in HCV-associated cirrhosis, NAFLD and HCC cohorts. Conclusion: Our integrative analyses uncover how HCV perturbs the hepatocyte cell circuits to drive chronic liver disease and hepatocarcinogenesis. This proteogenomic atlas of HCV infection provides a model for the discovery of novel drivers for viral- and non-viral induced liver disease. Overall design: mRNA profiles of either mock or HCV-infected Huh7.5.1dif cells, performed in triplicates and collected every day between days 0 and 10 post infection. HCV infection reached plateau at day 7 post infection (pi). After day 7 pi unspecific effects cannot be excluded.

Publication Title

Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE97145
Analysis of the differences in gene expression between wild type and Gpr120 knockout brown adipose tissue
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The goals were to investigate differences in gene expression between wild type and Gpr120 knockout mouse interscapular brown adipose tissue

Publication Title

The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE61279
Transcriptome and Epigenome analysis of fetal and adult liver samples
  • organism-icon Homo sapiens
  • sample-icon 106 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetic and epigenetic regulation of gene expression in fetal and adult human livers.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE61276
Transcriptome analysis of fetal and adult liver samples
  • organism-icon Homo sapiens
  • sample-icon 106 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Genome wide expression analysis of 92 adult and 14 fetal liver samples

Publication Title

Genetic and epigenetic regulation of gene expression in fetal and adult human livers.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14249
Genes induced by IL-9 in the colon of transgenic mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The aim of this work was to identify genes induced by IL-9 in the colon of IL-9-tarnsgenic mice (Tg5). Therefore, we performed a comprehensive study of the genes expressed in the colon of IL-9 transgenic and wild type FVB mice, taking advantage of the affymetrix microarray technology.

Publication Title

IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34093
Nucleosome dynamics specifies genome-wide binding of the male germ cell gene regulator CTCFL and of CTCF
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34091
Nucleosome dynamics specifies genome-wide binding of the male germ cell gene regulator CTCFL and of CTCF [Mouse430_2 Expression]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The effect of CTCFL mutation on the transcriptional program in testes

Publication Title

The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact