refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE31789
DNA methylation epigenotype expanding to non-polycomb target genes, induced by Epstein-Barr virus infection in human gastric cancer
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE31787
Aberrant DNA methylation epigenotype expanding to non-polycomb target genes, induced by Epstein-Barr virus infection in human gastric cancer [Affymetrix Expression]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant promoter methylation is known to be deeply involved in human gastric carcinogenesis, while association of Epstein-Barr virus (EBV) to the aberrant methylation has not been fully clarified. We analyzed promoter methylation in clinical gastric cancer cases using illumina's Infinium beadarray, and hierarchical clustering analysis classified gastric cancer into three subgroups: low and high methylation epigenotypes in EBV-negative cases, and markedly higher methylation epigenotype that was completely matched to EBV-positive cases. Three epigenotypes were characterized by three groups of genes: genes methylated specifically in the EBV-positive epigenotype (EBV(+)-markers, e.g. CXXC4, TIMP2, PLXND1), genes methylated both in EBV-positive and high epigenotypes (High-markers, e.g. COL9A2, EYA1, ZNF365), and genes methylated all in EBV-positive, high and low epigenotypes of gastric cancer (Common-markers, e.g. AMPH, SORCS3, AJAP1). Polycomb repressive complex (PRC)-target genes in ES cells were significantly enriched in High- and Common-markers (P=2x10-15 and 2x10-34, respectively), but not in EBV(+)-markers (P=0.2), suggesting a different cause for EBV(+)-marker methylation. Recombinant EBV was infected to low epigenotype gastric cancer cell, MKN7. In all the three independently established clones, DNA methylation was induced in High- and EBV(+)-markers after 18 weeks, demonstrating that EBV-positive epigenotype should involve methylation of Common-, High-, and EBV(+)-markers simultaneously. The de novo methylated genes were overlapped well among the three clones, and the methylation caused gene repression. In summary, gastric cancer was classified into three DNA methylation epigenotypes, EBV-positive gastric cancer showed markedly high methylation epigenotype expanding to non-PRC target genes, and EBV infection per se could induce the EBV-positive epigenotype.

Publication Title

Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact