refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 270 results
Sort by

Filters

Technology

Platform

accession-icon GSE42986
Transcriptome profiling in human primary mitochondrial respiratory chain disease
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: CHOP_1.0_ENTREZG (huex10st)

Description

Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. To identify a common cellular response to RC disease, systems biology level transcriptome investigations were performed in human RC disease skeletal muscle and fibroblasts. Global transcriptional and post-transcriptional dysregulation in a tissue-specific fashion was identified across diverse RC complex and genetic etiologies. RC disease muscle was characterized by decreased transcription of cytosolic ribosomal proteins to reduce energy-intensive anabolic processes, increased transcription of mitochondrial ribosomal proteins, shortened 5'-UTRs to improve translational efficiency, and stabilization of 3'-UTRs containing AU-rich elements. These same modifications in a reversed direction typified RC disease fibroblasts. RC disease also dysregulated transcriptional networks related to basic nutrient-sensing signaling pathways, which collectively mediate many aspects of tissue-specific cellular responses to primary RC disease. These findings support the utility of a systems biology approach to improve mechanistic understanding of mitochondrial RC disease.

Publication Title

Primary respiratory chain disease causes tissue-specific dysregulation of the global transcriptome and nutrient-sensing signaling network.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE140457
Expression data from mouse bladder tissues
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

PAI-1 is considered as an oncogenic protein. However, PAI-1 deficiency didn’t stop tumor development in animal cancer models. Thus, it is suggested that there may be compensatory pathway that support tumor growth in the absence of PAI-1.

Publication Title

Plasminogen activator inhibitor-2 (PAI-2) overexpression supports bladder cancer development in PAI-1 knockout mice in N-butyl-N- (4-hydroxybutyl)-nitrosamine- induced bladder cancer mouse model.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18104
Effect of DJ-1 on early development in porcine nuclear transfer embryos
  • organism-icon Sus scrofa
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

We aimed to identify a reprogramming factor in mammalian oocytes. DJ-1 is one candidate gene of the factor. Inhibition of DJ-1 function in nuclear transfer embryos affected developmental abilities. The downstream effect of this DJ-1 inhibition was examined using microarrays.

Publication Title

Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE25118
Regulation of gene expression in ALK inhibitor CH5424802-treated NCI-H2228 xenograft tumors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To clarify the downstream signal pathway of EML4-ALK in NSCLC, we performed Affymetrix GeneChip analysis using ALK inhibitor CH5424802-treated NCI-H2228 xenograft tumors, and comprehensively characterized the gene expression regulated by inhibition of activated ALK.

Publication Title

CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16157
Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Cancer cells consume large amounts of glucose because of their specific metabolic pathway. However, cancer cells exist in tumor tissue where glucose is insufficient. To survive, cancer cells likely have the mechanism to elude their glucose addiction. Here we show that functional mitochondria are essential if cancer cells are to avoid glucose addiction.

Publication Title

Mitochondria regulate the unfolded protein response leading to cancer cell survival under glucose deprivation conditions.

Sample Metadata Fields

Disease, Cell line, Time

View Samples
accession-icon GSE50628
Gene expression analysis in children with complex seizures by influenza A (H1N1)pdm09 or rotavirus gastroenteritis
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The differences of clinical characteristics in complex seizures induced by influenza A(H1N1)pdm09 and rotavirus gastroenteritis are well known, but the pathogenic mechanisms remain unclear. We analyzed the gene expression profiles in the peripheral whole blood cells isolated from pediatric patients using an Affymetrix oligonucleotide microarray.

Publication Title

Gene expression analysis in children with complex seizures due to influenza A(H1N1)pdm09 or rotavirus gastroenteritis.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE131617
Genes associated with the progression of neurofibrillary tangles in Alzheimer's disease
  • organism-icon Homo sapiens
  • sample-icon 424 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Transcriptome analysis of post-mortem brain tissue specimens from three brain regions (BRs), entorinal, temporal and frontal cortices, of 71 Japanese brain-donor subjects to identify genes relevant to the expansion of neurofibrillary tangles. In total, 213 brain tissue specimens (= 71 subjects 3 BRs) were involved in this study. The spreading of neurofibrillary tangles (NFTs), intraneuronal aggregates of highly phosphorylated microtubule-associated protein tau, across the human brain is correlated with the cognitive severity of Alzheimers disease (AD). To identify genes relevant to NFT expansion defined by the Braak stage, we conducted exon array analysis with an exploratory sample set consisting of 213 human post-mortem brain tissue specimens from the entorinal, temporal and frontal cortices of 71 brain-donor subjects: Braak NFT stages 0 (N = 13), III (N = 20), IIIIV (N = 19) and VVI (N = 19). We identified eight genes, RELN, PTGS2, MYO5C, TRIL, DCHS2, GRB14, NPAS4 and PHYHD1, associated with the Braak stage. The expression levels of three genes, PHYHD1, MYO5C and GRB14, exhibited reproducible association on real-time quantitative PCR analysis. In another sample set, including control subjects (N = 30) and patients with late-onset AD (N = 37), dementia with Lewy bodies (N = 17) and Parkinson disease (N = 36), the expression levels of two genes, PHYHD1 and MYO5C, were obviously associated with late-onset AD. Proteinprotein interaction network analysis with a public database revealed that PHYHD1 interacts with MYO5C via POT1, and PHYHD1 directly interacts with amyloid beta-peptide 42. It is thus likely that functional failure of PHYHD1 and MYO5C could lead to AD development.

Publication Title

Genes associated with the progression of neurofibrillary tangles in Alzheimer's disease.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE21876
Transcriptional regulation of ROS controls the transition from proliferation to differentiation in the root
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We isolated the meristematic and elongation zones of Col-0, upb1-1 mutant and 35S::UPB1-3YFP/upb1-1 plants by micro-dissection and extracted RNA from each section independently.

Publication Title

Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE17494
KDM7 is a dual demethylase for histone H3 lysines 9 and 27 and functions in brain development
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The roles of histone demethylase KDM7 in gene expression were analyzed by gene expression profiling experiments with the mouse neuroblastoma cell line Neuro2A.

Publication Title

KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE11185
Differences between NOR1 and EWS/NOR1
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To examine the differences between NOR1 and its fusion gene product EWS/NOR1, we compared the gene expression profiles of NOR1- and EWS/NOR1-overexpressing 293 cells.

Publication Title

Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact