In the present study, we analyze the effect of knocking down LSG1 and KRas(V12D) overexpression in MRC5 cells in the transcriptome using Ampliseq RNA sequencig. We observed that shLSG1 induced a potent senescence response that is characterized by the activation of ER-Stress and cholesterol biosynthetic pathway Overall design: MRC5 were transfected with siRNA to knockdown the small GTPase LSG1. Total mRNA was extracted and expression profiles were analyzed.
Inhibition of the 60S ribosome biogenesis GTPase LSG1 causes endoplasmic reticular disruption and cellular senescence.
Specimen part, Cell line, Subject
View SamplesBJAB cells over expressing KSHV PAN RNA
Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA.
No sample metadata fields
View SamplesThe canonical role of eEF1A is to deliver the aminoacyl tRNA to the ribosome, we have used the yeast model system to investigate further roles for this protein.
Inappropriate expression of the translation elongation factor 1A disrupts genome stability and metabolism.
No sample metadata fields
View SamplesLow back pain is a major cause of disability especially for people between 20 and 50 years of age. As a costly healthcare problem, it imposes a serious socio-economic burden. Current surgical therapies have considerable drawbacks and fail to replace the normal disc in facilitating spinal movements and absorbing load. Therefore, the focus of regenerative medicine is on identifying biomarkers and signalling pathways to improve our understanding about the cascades of disc degeneration and allow for the design of specific therapies. We hypothesized that comparing microarray profiles from degenerative and non-degenerative discs will lead to the identification of dysregulated signalling and pathophysiological targets. Microarray data sets were generated from human annulus fibrosus cells and analysed using IPA ingenuity pathway analysis system. Gene expression values were validated by qRT-PCR, and respective proteins were identified by immunohistochemistry. Microarray analysis revealed 17 dysregulated molecular markers and various dysregulated cellular functions, including cell proliferation and inflammatory response, in the human degenerative annulus fibrosus. The most significant canonical pathway induced in degenerative annulus fibrosus was found to be the interferon signalling pathway. In conclusion, this study indicates interferon-alpha signalling pathway activation with IFIT3 and IGFBP3 up-regulation which may affect cellular function in human degenerative disc.
Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus.
Specimen part, Subject
View SamplesAbstract: The antimalarial activity of the antibiotic thiostrepton has long been attributed to inhibition of apicoplast protein synthesis through binding of apicoplast ribosomal RNA. However, the kinetics of parasite death upon thiostrepton treatment differ from those seen for other inhibitors of apicoplast housekeeping functions. We have analysed global changes in gene expression of the malaria parasite, Plasmodium falciparum, in an attempt to shed light on the responses of the parasite to this drug. Our results indicate a delay in gene expression profiles of thiostrepton-treated parasites. A small number of genes appear to be regulated outside of this trend; our data suggest a response from genes encoding components of the mitochondrial translational machinery, while little response is seen from genes encoding apicoplast-targeted proteins. Our findings are consistent with an effect of thiostrepton on mitochondrial protein synthesis, and thus warrant a re-evaluation of the target of thiostrepton in Plasmodium. They also provide some suggestion of mitochondrion nucleus signalling in the parasite.
Transcript-level responses of Plasmodium falciparum to thiostrepton.
Treatment
View SamplesHumoral responses of mice specifically deleted for Moz (a histone acetyltransferase) or c-Myb (a transcription factor) in B cells were aberrant. RNA-sequencing analysis was performed to assess gene expression differences compared to wild-type controls in germinal center B cells or plasmablasts. Overall design: Moz f/f Aicda1-Cre, Aicda1-Cre, Myb f/f Cd23-Cre, Mybf/f (no cre) mice were immunized with NP-KLH precipitated in alum and germinal center B cells were sort-purified. Secondary plasmablasts were sort-purified from immunized mice boosted with NP-KLH in PBS (Myb experiment). Two independent experiments were conducted.
Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ.
Specimen part, Subject
View SamplesEnvironmental enteric dysfunction (EED), a chronic diffuse inflammation of the small intestine, is associated with stunting in children in the developing world. The pathobiology of EED is poorly understood because of the lack of a method to elucidate the host response. This study utilized a novel microarray method to interrogate the host transcriptome in feces in Malawian children with EED. Our data showed that the children studied had a range of %L values, consistent a spectrum of EED from normal to severe. We identified 12 transcripts associated with the severity of EED, including chemokines that stimulate T-cell proliferation, Fc fragments of multiple immunoglobulin families, interferon-induced proteins, activators of neutrophils and B-cells, and mediators that dampen cellular responses to hormones. EED associated transcripts mapped to pathways related to cell adhesion, and responses to a broad spectrum of viral, bacterial and parasitic microbes and enhanced phagocytosis. Several mucins, regulatory factors and protein kinases associated with the maintenance of the mucous layer were expressed less in children with EED than normal children. In conclusion, EED represents the focused activation of elements of the immune system and is associated with widespread intestinal barrier disruption. The differentially expressed transcripts may be explored as potential biomarkers.
Environmental Enteric Dysfunction Includes a Broad Spectrum of Inflammatory Responses and Epithelial Repair Processes.
Sex, Disease, Disease stage
View SamplesC.pn potentiated hyperlipidemia-induced inflammasome activity in cultured macrophages and in foam cells in atherosclerotic lesions of Ldlr/ mice. We discovered that C.pn-induced extracellular IL-1 triggers a negative feedback loop to inhibit GPR109a and ABCA1 expression and cholesterol efflux leading to accumulation of intracellular cholesterol and foam cell formation. Gpr109a and Abca1 were both upregulated in plaque lesions in Nlrp3/ mice in both hyperlipidemic and C.pn infection models.
Chlamydia pneumoniae Hijacks a Host Autoregulatory IL-1β Loop to Drive Foam Cell Formation and Accelerate Atherosclerosis.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MAFG is a transcriptional repressor of bile acid synthesis and metabolism.
Treatment
View SamplesSpecific bile acids are potent signaling molecules that modulate metabolic pathways affecting lipid, glucose and bile acid homeostasis, and the microbiota. Bile acids are synthesized from cholesterol in the liver, and the key enzymes involved in bile acid synthesis (Cyp7a1, Cyp8b1) are regulated transcriptionally by the nuclear receptor FXR. We have identified an FXR-regulated pathway upstream of a transcriptional repressor that controls multiple bile acid metabolism genes. We identify MafG as an FXR target gene and show that hepatic MAFG overexpression represses genes of the bile acid synthetic pathway and modifies the biliary bile acid composition. In contrast, loss-of-function studies using MafG(+/-) mice causes de-repression of the same genes with concordant changes in biliary bile acid levels. Finally, we identify functional MafG response elements in bile acid metabolism genes using ChIP-seq analysis. Our studies identify a molecular mechanism for the complex feedback regulation of bile acid synthesis controlled by FXR
MAFG is a transcriptional repressor of bile acid synthesis and metabolism.
Treatment
View Samples