refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 188 results
Sort by

Filters

Technology

Platform

accession-icon GSE42955
Expression data from human heart
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Global gene expression is altered in heart failure. This syndrome can be caused by cardiovascular diseases, including dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), hypertrophic cardiomyopathy, viral or toxic myocarditis, hypertension, and valvular diseases.

Publication Title

Differential gene expression of cardiac ion channels in human dilated cardiomyopathy.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21839
Transcriptome analysis of wild type E. coli (K-12 MG1655) comparing to mutant E. coli strain (ECOM4) under aerobic and anaerobic conditions
  • organism-icon Escherichia coli str. k-12 substr. mg1655
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Cytochrome oxydases and quinol monooxygenase were removed from the E. coli genome resulting in oxygen-independent physiology

Publication Title

Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shift in Escherichia coli K-12 MG1655.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60963
Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE60961
Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development [mRNA]
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This study tested the hypothesis that mRNA expression profiles change in the muscular type rat saphenous artery during early postnatal development. To explore this, we performed mRNA microarray analysis on muscular type saphenous arteries of young (10-12 days) and adult (2-3 months) rats.

Publication Title

Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE25944
Role of STAT3 in DU145 prostate cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE25866
Expression data from DU145 cells treated with ST3-Hel2A-2 STAT3 N-domain inhibitor coupled to analysis of genome-wide STAT3 binding sites
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Activation of Signal Transducer and Activator of Transcription 3 (STAT3) is common in prostate cancers. STAT3 may induce cell proliferation and resistance to apoptosis, as well as promote tumor angiogenesis, invasion, and migration by activating gene expression. Many STAT3-dependent transcriptional responses are mediated through protein-protein interactions that involve the amino-terminal domain (N-domain).

Publication Title

STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE25867
Expression data from DU145 cells treated with STAT3 siRNA
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Activation of Signal Transducer and Activator of Transcription 3 (STAT3) is common in prostate cancers. STAT3 may induce cell proliferation and resistance to apoptosis, as well as promote tumor angiogenesis, invasion, and migration by activating gene expression. Many STAT3-dependent transcriptional responses are mediated through protein-protein interactions that involve the amino-terminal domain (N-domain).

Publication Title

STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE13005
Macrophage response to silica nanoparticles
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Using a macrophage cell line, we demonstrate the ability of amorphous silica particles to stimulate inflammatory protein secretion and induce cytotoxicity. Whole genome microarray analysis of early gene expression changes induced by 10nm and 500nm particles showed that the magnitude of change for the majority of genes correlated more tightly with particle surface area than either particle mass or number. Gene expression changes that were size-specific were also identified, however the overall biological processes represented by all gene expression changes were nearly identical, irrespective of particle diameter. Our results suggest that on an equivalent nominal surface area basis, common biological modes of action are expected for nano- and supranano-sized silica particles.

Publication Title

Macrophage responses to silica nanoparticles are highly conserved across particle sizes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP155036
RNA-seq analysis of canonical and adaptive human NK cell and CD8+ T cell subsets from HCMV seropositive donors
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report our results of RNA-seq analysis on freshly isolated, sorted subsets of cytotoxic lymphocytes Overall design: RNA was isolated from sorted cells. Libraries were created using standard Illumina reagents and analyzed using a HiSeq2500.

Publication Title

ARID5B regulates metabolic programming in human adaptive NK cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE76757
Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in pre-clinical models of aggressive lymphomas
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

assess the efficacy of Pimasertib to characterize its mechanism of action

Publication Title

Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in preclinical models of aggressive lymphomas.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact