refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1125 results
Sort by

Filters

Technology

Platform

accession-icon GSE22369
HDAC1 and HDAC2 in fetal hemoglobin induction
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a), Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE22366
Primary human erythroid progenitor cells HDAC1 and HDAC2 shRNA knockdown samples
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a), Affymetrix Human Genome U133A Array (hgu133a)

Description

Gene expression profiling was performed on primary human erythroid progenitor cells expressing a control shRNA (luciferase), two different HDAC1 shRNAs, and two different HDAC2 shRNAs.

Publication Title

Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22368
Primary human erythroid progenitor cells NK57 treatment samples
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Gene expression profiling was performed on primary human erythroid progenitor cells left untreated or treated with 2uM NK57 for 3 days.

Publication Title

Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE22367
Primary human erythroid progenitor cells SAHA treatment samples
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Gene expression profiling was performed on primary human erythroid progenitor cells left untreated or treated with 0.5uM SAHA.

Publication Title

Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE81986
An FFPE-based prognostic signature to predict metastasis in stage I/II microsatellite stable colorectal cancer
  • organism-icon Homo sapiens
  • sample-icon 294 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE81980
Expression data from early stage CRC patients' tumors [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 150 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This study was conducted in order to identify biomarkers for a prognostic gene expression signature for metastases in early stage CRC.

Publication Title

A formalin-fixed paraffin-embedded (FFPE)-based prognostic signature to predict metastasis in clinically low risk stage I/II microsatellite stable colorectal cancer.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE92638
Effect of STAT3 Knockdown on Gene Level Expression Profiling of hepatic stellate LX-2 Cells in response to TGF-b treatment
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Transcriptome analysis of RNAs extracted from 2 hour-TGF-b-treated or untreated LX-2 cells with or without STAT3 knockdown

Publication Title

Transforming Growth Factor-β (TGF-β) Directly Activates the JAK1-STAT3 Axis to Induce Hepatic Fibrosis in Coordination with the SMAD Pathway.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE113995
Effect of Smurf1 or Smurf2 deficiency on Gene Expression Profiling of aged mouse liver tissues
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptome analysis of RNAs extracted from livers of wild type or Smurf1 knock out (KO) or Smurf2 KO mice at age of 11 month old.

Publication Title

Non-proteolytic ubiquitin modification of PPARγ by Smurf1 protects the liver from steatosis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP125061
The single cell RNA seq of pulmonary alveolar epithelial cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The pulmonary alveolar epithelium which play key role in lung biological function is mainly composed of two types of epithelial cells: alveolar type I (AT1) and type II (AT2) cells. We know very little about developmental heterogeneity of the AT1 cell population. By using 10X genomics “Chromium Single Cell” technology, we performed single-cell RNA-seq (scRNA-seq) analyses of AT1 cells at postnatal day 3 (P3), P15, and P60, along with AT2 cells (P60) in mice. Our study identified a robust new genetic marker (Igfbp2) of postnatal AT1 cells. The study also provided the transcriptome information of AT1 cells during alveologensis. Overall design: We performed 10X genomics single-cell RNA-seq at various developmental stages of AT1 cells of lungs at postnatal (P)3, P15, and P60. We also performed 10X genomics single-cell RNA-seq of AT2 cells of P60 lungs.

Publication Title

Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE3667
1, 3, or 5 Day Post Amputation Vehicle or TCDD Exposed
  • organism-icon Danio rerio
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Adult zebrafish can completely regenerate their caudal fin following amputation. This complex process is initiated by the formation of an epithelial would cap over the amputation site by 12 hours post amputation (hpa). Once the cap is formed, mesenchymal cells proliferate and migrate from sites distal to the wound plane and accumulate under the epithelial cap forming the blastemal structure within 48 hpa. Blastemal cells proliferate and differentiate, replacing the amputated tissues, which are populated with angiogenic vessels and innervating nerves during the regenerative outgrowth phase which is completed around 14 days post amputation (dpa). Regenerative outgrowth does not occur in TCDD-exposed zebrafish. To identify the molecular pathways that are perturbed by TCDD exposure, male zebrafish were i.p. injected with 50 ng/g TCDD or vehicle and caudal fins were amputated. Regenerating fin tissue was collected at 1, 3 and 5 dpa for mRNA abundance analysis. Microarray analysis and quantitative real time PCR revealed that wound healing and regeneration alone altered the expression of nearly 900 genes by at least two fold between 1 and 5 dpa. TCDD altered the abundance of 370 genes at least two fold. Among these, several known aryl hydrocarbon responsive genes were identified in addition to several genes involved in extracellular matrix composition and metabolism. The profile of misexpressed genes is suggestive of impaired cellular differentiation and extracellular matrix composition potentially regulated by Sox9b.

Publication Title

Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation.

Sample Metadata Fields

Sex, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact