refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 117 results
Sort by

Filters

Technology

Platform

accession-icon GSE45593
GENOMICS TO IDENTIFY HLA IDENTICAL RENAL TRANSPLANT TOLERANCE SIGNATURES
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Immunosuppression is needed in HLA identical sibling renal transplantation. We conducted a tolerance trial in this patient cohort using Alemtuzumab induction, donor hematopoietic stem cells, tacrolimus/mycophenolate immunosuppression converted to sirolimus, planning complete drug withdrawal by 24 months post-transplantation. After an additional 12 months with no immunosuppression, normal biopsies and renal function, recipients were considered tolerant. Twenty recipients were enrolled. Of the first 10 (>36 months post-transplantation), 5 had immunosuppression successfully withdrawn for 16-36 months (tolerant), 2 had disease recurrence and 3 had subclinical rejection in protocol biopsies (non-tolerant). Microchimerism disappeared after 1 year, and CD4+CD25highCD127-FOXP3+ T cells and CD19+IgD/M+CD27- B cells increased to 5 years post-transplantation in both groups, whereas immune/inflammatory gene expression pathways in the peripheral blood and urine were differentially downregulated in tolerant compared to non-tolerant recipients. Therefore, in this HLA identical renal transplant tolerance trial, absent chimerism, Treg and Breg immunophenotypes were indistinguishable between tolerant and non-tolerant recipients, but global genomic changes indicating immunomodulation were observed only in tolerant recipients.

Publication Title

Genomic biomarkers correlate with HLA-identical renal transplant tolerance.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE22229
Identification of a B cell signature associated with renal transplant Tolerance in humans
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, investigators recruited the largest reported cohort of tolerant kidney transplant recipients who maintained their graft after ceasing to take their immunosuppression drug, and compared this cohort to subjects with stable allograft function while on immunosuppression and healthy non transplated, controls. Using gene expression studies, they identified genetic markers that are strong candidates for predicting kidney transplant candidates who may benefit from minimization or withdrawl of immunosuppression.

Publication Title

Identification of a B cell signature associated with renal transplant tolerance in humans.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74903
Assessing concordance of drug-induced transcriptional response in rodent liver and cultured hepatocytes
  • organism-icon Rattus norvegicus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived with would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), primary human hepatocytes (HPH) from TG, and mouse liver / HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA on a quantitative metric when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal low concordance for all methods. We investigate differences in the baseline state of cultured cells in the context of drug-induced perturbations in rat liver and highlight the striking similarity between toxicant-exposed cells in vivo and untreated cells in vitro.

Publication Title

Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE53808
White Matter transcriptome in chronic alcoholism
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Chronic alcohol consumption can lead to alchohol-related brain damage (ARBD). Despite the well known acute effects of alcohol the mechanism responsible for chronic brain damage is largely unknown. Pathologically the major change is the loss of white matter while neuronal loss is mild and restricted to a few areas such as the prefrontal cortex. In order to improve our understanding of ARBD pathogenesis we used microarrays to explore the white matter transcriptome of alcoholics and controls.

Publication Title

Comorbidities, confounders, and the white matter transcriptome in chronic alcoholism.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP077873
Transcriptome analysis of mouse lung epithelial cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mouse lung epithelial subpopulations (alveolar type 2, basal and airway luminal cells) freshly dissociated from mouse lung and trachea were isolated by FACS. RNA-seq gene expression profiling was used to determine gene signature from each population. Overall design: Cells were isolated from the small airway (SA) and large airway (LA) of 6 mouse lungs

Publication Title

Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE87696
Toxicogenomic module associations with pathogenesis: A network based approach to understanding drug toxicity
  • organism-icon Rattus norvegicus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Despite investment in toxicogenomics, nonclinical safety studies are still used to predict clinical liabilities for new drug candidates. Network-based approaches for genomic analysis help overcome challenges with whole-genome transcriptional profiling using limited numbers of treatments for phenotypes of interest. Herein, we apply co-expression network analysis to safety assessment using rat liver gene expression data to define 415 modules, exhibiting unique transcriptional control, organized in a visual representation of the transcriptome (the TXG-MAP). Accounting for the overall transcriptional activity resulting from treatment, we explain mechanisms of toxicity and predict distinct toxicity phenotypes using module associations. We demonstrate that early network responses compliment traditional histology-based assessment in predicting outcomes for longer studies and identify a novel mechanism of hepatotoxicity involving endoplasmic reticulum stress and Nrf2 activation. Module-based molecular subtypes of cholestatic injury derived using rat translate to human. Moreover, compared to gene-level analysis alone, combining module and gene-level analysis performed in sequence identifies significantly more phenotype-gene associations, including established and novel biomarkers of liver injury.

Publication Title

Toxicogenomic module associations with pathogenesis: a network-based approach to understanding drug toxicity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE85960
Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Maternal innate and adaptive immune responses are modulated during pregnancy to concurrently defend against infection and tolerate the semi-allogeneic fetus. The restoration of these systems after childbirth is poorly understood. We reasoned that enhanced innate immune activation may extend beyond gestation while adaptive immunity recovers. To test this hypothesis, the transcriptional profiles of total PBMCs following delivery in healthy women were compared to those of non-pregnant control subjects. Interestingly, interferon stimulated genes (ISGs) encoding proteins such as IFIT1, IFIT2, and IFIT3, as well as signaling proteins such as STAT1, STAT2, and MAVS, were enriched postpartum. Antiviral genes were primarily expressed in CD14+ cells and could be stratified according to genetic variation at the interferon-3 gene (IFNL3, also named IL28B) single nucleotide polymorphism (SNP) rs12979860. Antiviral gene expression was sustained beyond six months following delivery in mothers with a CT or TT genotype but resembled baseline non-pregnant control levels following delivery in mothers with a CC genotype. CT and TT IFNL3 genotypes have been associated with persistent elevated ISG expression in individuals chronically infected with hepatitis C virus. Together these data suggest that postpartum, the normalization of the physiological rheostat controlling interferon signaling is dependent on IFNL3 genotype.

Publication Title

Prolonged activation of innate antiviral gene signature after childbirth is determined by IFNL3 genotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP070903
Analysis of gene expression changes in early mouse embryos lacking Tgif1 and Tgif2
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the differences in gene expression between wild type and Tgif1;Tgif2 double null mouse embryos at approximately 9.0 days after fertilization. Overall design: Stage matched individual mouse embryos at approximately 9.0 days after fertilization (~9-10 somites) were analyzed by RNA-seq. We analyzed four wild type embryos and eight conditional double mutant embryos, lacking both alleles of Tgif1 and both Tgif2 alleles.

Publication Title

Tgif1 and Tgif2 Repress Expression of the RabGAP Evi5l.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE34873
Experimental identification of miR-378-3p targets by overexpression and silencing in murine NIH-3T3 fibroblasts
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

MicroRNAs (miRNAs) are short noncoding RNA molecules regulating the expression of mRNAs. Target identification of miRNAs is computationally difficult due to the relatively low homology between miRNAs and their targets. We provide data here utilizing an experimental approach to identify targets of mmu-miR-378-3p, where mmu-miR-378-3p was overexpressed and silenced in NIH-3T3 murine fibroblasts and compared to control RNA transfected cells (RISC-free siRNA). Expression of mRNAs was profiled and differentially expressed genes following either treatment as compared to control transfected cells were identified. In this way we identified 491 significantly differentially expressed genes with more than 1.4 fold change in either comparison. One of the putative targets Akt-1 was subsequently confirmed by luciferase reporter assay.

Publication Title

Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP071214
Sox2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells-of-origin
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Squamous cell carcinoma (SCC) of lung is a devastating malignancy with no effective treatments, due to its complex genomic profile. Therefore, pre-clinical models mimicking its salient features are urgently needed. Here we describe mouse models bearing various combinations of genetic lesions predominantly found in human SCC. We show that Sox2 but not Fgfr1 overexpression in tracheobronchial basal cells combined with Cdkn2ab and Pten loss results in SCC closely resembling the human counterpart. Interestingly, Sox2;Pten;Cdkn2ab mice develop SCC with a more peripheral location when Club or Alveolar type 2 (AT2) cells are targeted. Our model highlights the essential role of Sox2 in promoting a squamous cell fate from different cells-of-origin and represents an invaluable tool for the developing better intervention strategies. Overall design: After RNA extraction and Bioanalyzer analysis, we processed samples with high quality RNA profiles using Illumina Hiseq2500.

Publication Title

SOX2 Is the Determining Oncogenic Switch in Promoting Lung Squamous Cell Carcinoma from Different Cells of Origin.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact