refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1076 results
Sort by

Filters

Technology

Platform

accession-icon GSE39857
The RALA pathway can maintain the proliferation of KRAS- and BRAF-mutated cancer cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

By silencing of RALA, a downstream member of the RAS signal transduction pathway, we aimed to determine whether genes downstream of a mutated KRAS (codon 12 or 13) or a mutated BRAF can have significant functions in colorectal cancer carcinogenesis.

Publication Title

Effects of RAL signal transduction in KRAS- and BRAF-mutated cells and prognostic potential of the RAL signature in colorectal cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE38614
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE38584
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach (7TF and control)
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE38585
Hierarchical regulation in a KRAS pathway-dependent transcriptional network revealed by a reverse-engineering approach (RAS-ROSE and ROSE with siRNA)
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

RAS mutations are highly relevant for progression and therapy response of human tumours, but the genetic network that ultimately executes the oncogenic effects is poorly understood. Here we used a reverse-engineering approach in an ovarian cancer model to reconstruct KRAS oncogene-dependent cytoplasmic and transcriptional networks from perturbation experiments based on gene silencing and pathway inhibitor treatments. We measured mRNA and protein levels in manipulated cells by microarray, RT-PCR and Western Blot analysis, respectively. The reconstructed model revealed complex interactions among the transcriptional and cytoplasmic components, some of which were confirmed by double pertubation experiments. Interestingly, the transcription factors decomposed into two hierarchically arranged groups. To validate the model predictions we analysed growth parameters and transcriptional deregulation in the KRAS-transformed epithelial cells. As predicted by the model, we found two functional groups among the selected transcription factors. The experiments thus confirmed the predicted hierarchical transcription factor regulation and showed that the hierarchy manifests itself in downstream gene expression patterns and phenotype.

Publication Title

Reverse engineering a hierarchical regulatory network downstream of oncogenic KRAS.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE20907
Intrinsic response of thoracic propriospinal neurons to axotomy
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Analysis of expression changes in prelabeled laser-microdissected thoracic propriospinal neurons at different times after low-thoracic spinal cord transection in adult rats.

Publication Title

Intrinsic response of thoracic propriospinal neurons to axotomy.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE27362
Expression data from parthenogenetic and WT iPS samples and their parental fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Three parthenogenetic induced pluripotent stem cell (PgHiPSCs) lines were generated from each of the ovarian teratoma cell lines (two distinct individuals). Two normal iPS cell lines were generated from normal fibroblasts. Three biological replicates of normal embryonic stem cells (H9, HESCs) were perfomed.

Publication Title

Global analysis of parental imprinting in human parthenogenetic induced pluripotent stem cells.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE56136
The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Parental imprinting is a form of epigenetic regulation that results in parent-of-origin differential gene expression. To study Prader-Willi syndrome (PWS), a developmental imprinting disorder, we generated patient-derived induced pluripotent stem cells (iPSCs) harboring distinct deletions in the affected region on chromosome 15. Studying PWS-iPSCs and human parthenogenetic iPSCs unexpectedly revealed substantial upregulation of virtually all maternally expressed genes (MEGs) in the imprinted DLK1-DIO3 locus on chromosome 14. Subsequently, we identified IPW, a long noncoding RNA in the critical region of the PWS locus, as a regulator of the DLK1-DIO3 region, as its over-expression in PWS and parthenogenetic iPSCs results in downregulation of the MEGs in this locus. We further show that gene expression changes in the DLK1-DIO3 region coincide with chromatin modifications, rather than DNA methylation levels. Our results suggest that a subset of PWS phenotypes may arise from dysregulation of an imprinted locus distinct from the PWS region.

Publication Title

The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP079189
Dysregulated synaptic gene expression and axonal neuropathology in a human iPSC-based model of familial Parkinson''s disease
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We generated de novo induced pluripotent stem cells (iPSCs) from two Parkinson’s Disease patients (PD) harboring the p.A53T mutation. iPSC-derived mutant neurons displayed disease-relevant phenotypes at basal conditions, including protein aggregation, compromised neuritic outgrowth and contorted axons with swollen varicosities containing aSyn and tau. We have performed RNA Sequencing (RNA-Seq) of neurons from PD patient and control samples. RNA sequencing has also been performed to neurons derived from HUES samples subjected to the same differentiation protocol as reference. Overall design: We have performed RNA Sequencing (RNA-Seq) in neurons PD and control samples (two clones from each individual), along with HUES-derived neurons.

Publication Title

Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE6065
Murine host cell response to Aeromonas infection
  • organism-icon Mus musculus
  • sample-icon 268 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Aims: To assess the virulence of multiple Aeromonas spp. using two models, a neonatal mouse assay and a mouse intestinal cell culture.

Publication Title

Evaluating virulence of waterborne and clinical Aeromonas isolates using gene expression and mortality in neonatal mice followed by assessing cell culture's ability to predict virulence based on transcriptional response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32529
Mouse ischemic tolerance genomic analysis of the brain and blood.
  • organism-icon Mus musculus
  • sample-icon 224 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand, lipopolysaccharide (LPS) or the TLR9 ligand, unmethylated CpG ODNs prior to transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain and blood genomic profiles in response to preconditioning with these TLR ligands and to preconditioning via exposure to brief ischemia.

Publication Title

Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact