refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 93 results
Sort by

Filters

Technology

Platform

accession-icon GSE43552
Expression profiling of human medulloblastoma cell line ONS76 upon siRNA-mediated knockdown of KDM5A/LSD1
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

KDM5A/LSD1 is an important epigenetic regulator in medulloblastoma, the most frequent brain tumor of childhood. Here, the response of ONS76 medulloblastoma cells upon siRNA-mediated knockdown of KDM5A is analysed.

Publication Title

The KDM1A histone demethylase is a promising new target for the epigenetic therapy of medulloblastoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE57810
Expression profiling of tumor cells from MYCN-driven neuroblastoma upon BRD4 or AURKA inhibition
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Amplification of MYCN is the most prominent genetic marker of high-stage neuroblastoma, a childhood tumor originating from the neural crest. We generated a cell line (mNB-A1) from tumors developed in transgenic mouse and treated these cells with DMSO (n=6), the BRD4-inhibitor JQ1 (n=3) or the AURKA-inhibitor MLN8237 (n=3) for 24 h.

Publication Title

A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE51297
Expression profiling of murine MYCN-driven neuroblastomas from LSL-MYCN; Dbh-iCre mice.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Amplification of MYCN is the most prominent genetic marker of high-stage neuroblastoma, a childhood tumor originating from the neural crest.

Publication Title

A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE8194
Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression
  • organism-icon Zea mays
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP024394
Drosophila midgut regional gene expression
  • organism-icon Drosophila melanogaster
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We found that the midgut shows striking regional differentiation along its anterior-posterior axis. Ten distinct subregions differ in cell morphology, gene expression and aspects of Notch signaling. RNA from isolated regions that was analyzed by RNAseq revealed spatially regulated expression of hundreds of enzymes and other genes with likely tissue functions. Overall design: 10 midgut segments comprising from 1-3 subregions x 3 replicates from each segment = 30 samples

Publication Title

Physiological and stem cell compartmentalization within the Drosophila midgut.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE8174
Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Seedling data
  • organism-icon Zea mays
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns.

Publication Title

Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8179
Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Embryo data
  • organism-icon Zea mays
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns.

Publication Title

Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8176
Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression - Immature ear data
  • organism-icon Zea mays
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Maize Genome Array (maize)

Description

Microarray analysis of gene expression patterns in immature ear, seedling, and embryo tissues from the maize inbred lines B73 and Mo17 identified numerous genes with variable expression. Some genes had detectable expression in only one of the two inbreds; most of these genes were detected in the genomic DNA of both inbreds, indicating that the expression differences are likely caused by differential regulation rather than by differences in gene content. Gene expression was also monitored in the reciprocal F1 hybrids B73xMo17 and Mo17xB73. The reciprocal F1 hybrid lines did not display parental effects on gene expression levels. Approximately 80% of the differentially expressed genes displayed additive expression patterns in the hybrids relative to the inbred parents. The approximately 20% of genes that display nonadditive expression patterns tend to be expressed at levels within the parental range, with minimal evidence for novel expression levels greater than the high parent or less than the low parent. Analysis of allele-specific expression patterns in the hybrid suggested that intraspecific variation in gene expression levels is largely attributable to cis-regulatory variation in maize. Collectively, our data suggest that allelic cis-regulatory variation between B73 and Mo17 dictates maintenance of inbred allelic expression levels in the F1 hybrid, resulting in additive expression patterns.

Publication Title

Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP053301
Drosophila ovarian stage 8 and 10 follicle gene expression
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We identified genes whose expression changes between stage 8 and stage 10. We also identified genes whose expression was altered in stage 10 from temperature senstive ecdysone receptor mutant flies raised at the restrictive temperature. The experiments showed a significant number of genes that are upregulated in stage 10 depend EcR-mediated signaling. Overall design: 3 samples x 3 repeats

Publication Title

Steroid Signaling Establishes a Female Metabolic State and Regulates SREBP to Control Oocyte Lipid Accumulation.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE60174
Transcriptomic characterization of C57BL/6 mouse embryonic stem cell differentiation and its modulation by developmental toxicants
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To develop an in vitro model for developmental toxicity testing, we characterized gene expression changes during mouse embryonic stem cell (mESC) differentiation and their modulation by developmental toxicants.

Publication Title

Transcriptomic characterization of C57BL/6 mouse embryonic stem cell differentiation and its modulation by developmental toxicants.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact