refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 193 results
Sort by

Filters

Technology

Platform

accession-icon GSE53046
C10ORF10/DEPP, a transcriptional target of FOXO3 regulates ROS-sensitivity by destabilizing peroxisomes in human neuroblastoma
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

FOXO transcription factors control cellular formation of reactive oxygen species (ROS), which critically contribute to cell survival and cell death in neuroblastoma. Here, we report that C10orf10, also named Decidual Protein induced by Progesterone (DEPP), is a direct transcriptional target of FOXO3 in human neuroblastoma. As FOXO3-mediated apoptosis involves a biphasic ROS accumulation, we analyzed cellular ROS levels in DEPP-knockdown cells by live-cell imaging. Knockdown of DEPP prevented the primary and secondary ROS accumulation during FOXO3 activation and attenuates FOXO3-induced apoptosis, whereas its overexpression raises cellular ROS levels and sensitizes to cell death. In neuronal cells, cellular steady state ROS are mainly detoxified in peroxisomes by the enzyme CAT/catalase. As DEPP contains a peroxisomal-targeting-signal-type-2 (PTS2) sequence at its N-terminus that enables protein import into peroxisomes, we analyzed the effect of DEPP on peroxisomal function by measuring the catalase enzyme activity. Catalase activity was reduced by conditional DEPP overexpression and significantly increased in DEPP-knockdown cells. Using live cell imaging and fluorescent peroxisomal and mitochondrial probes we demonstrate that DEPP localizes to peroxisomes and mitochondria in neuroblastoma cells. The combined data indicate that DEPP reduces peroxisomal activity and thereby impairs the cellular ROS detoxification capacity and contributes to death sensitization.

Publication Title

C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE55525
Hematopoietic stem cell quiescence attenuates DNA damage repair and response contributing to age-dependent DNA damage accumulation
  • organism-icon Mus musculus
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Comprehensive analysis of gene expression in hematopoietic stem and progenitor cells from young and old mice.

Publication Title

Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon SRP040966
InFusion: advancing discovery of fusion genes and chimeric transcripts from RNA-seq data
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Gene fusions and chimeric transcripts occur frequently in cancers and in some cases drive the development of the disease. An accurate detection of these events is crucial for cancer research and in a long-term perspective could be applied for personalized therapy. RNA-seq technology has been established as an efficient approach to investigate transcriptomes and search for gene fusions and chimeric transcripts on a genome-wide scale. A number of computational methods for the detection of gene fusions from RNA-seq data have been developed. However, recent studies demonstrate differences between commonly used approaches in terms of specificity and sensitivity. Moreover their ability to detect gene fusions on the isoform level has not been studied carefully so far. Here we propose a novel computational approach called InFusion for fusion gene detection from deep RNA sequencing data. Validation of InFusion on simulated and on several public RNA-seq datasets demonstrated better detection accuracy compared to other tools. We also performed deep RNA sequencing of two well-established prostate cancer cell lines. Using these data we showed that InFusion is capable of discovering alternatively spliced gene fusion isoforms as well as chimeric transcripts that include non-exonic regions. In addition our method can detect anti-sense transcription in the fusions by incorporating strand specificity of the sequencing library. Overall design: Detection of fusion genes and chimeric transcripts from deep RNA-seq data

Publication Title

InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56928
Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The thymic microenvironment is essential for proper differentiation and selection of thymocytes.Thymic involution in aged mice results in decreased T cell output and immune function. Here we use gene expression profiling of FACS sorted thymic stromal subsets to identify molecular mediators of thymocyte: stromal cell interactions, as well as gene expression changes thymic stromal subsets during early stages of thymic involution .

Publication Title

Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE26101
Histone acetylation and DNA demethylation of T-cells result in an anaplastic large cell lymphoma-like phenotype.
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A characteristic feature of anaplastic large cell lymphoma (ALCL) is the significant reduction of the T-cell expression program despite its T-cell origin, a finding very similar to the loss of B-cell identity of classical Hodgkin lymphoma (cHL). Previously we demonstrated that epigenetic mechanisms are active in cHL to induce this peculiar phenotype. The results show that combined DNA demethylation and histone acetylation of T-cell lines induce an almost complete extinction of the T-cell phenotype, including the down-regulation of essential T-cell receptor signalling pathway genes such as CD3, LCK and ZAP70, as well as an up-regulation of ALCL-characteristic genes. In contrast, combined DNA demethylation and histone acetylation of ALCL cells is not able to reconstitute their T-cell phenotype. This clearly demonstrates that similar epigenetic mechanisms are active in ALCL and cHL which are responsible for the extinction of their cell type characteristic phenotype.

Publication Title

Histone acetylation and DNA demethylation of T cells result in an anaplastic large cell lymphoma-like phenotype.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP139607
Defining the transcriptome of T cells transduced with FOXP3fl or FOXP3d2
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Rationale - Regulatory T (Treg) cells suppress immune responses and have been shown to attenuate atherosclerosis. The Treg cell lineage specification factor FOXP3 is essential for Treg cells' ability to uphold immunological tolerance. In humans, FOXP3 exists in several different isoforms, however, their specific role is poorly understood. Objective - To define the regulation and functions of the two major FOXP3 isoforms, FOXP3fl and FOXP3?2, as well as to establish whether their expression is associated with ischemic atherosclerotic disease. Methods and Results - Human primary T-cells were transduced with lentiviruses encoding distinct FOXP3 isoforms. The phenotype and function of these cells were analyzed by flow cytometry, in vitro suppression assays and RNA-sequencing. We also assessed the effect of activation on Treg cells isolated from healthy volunteers. Treg cell activation resulted in increased FOXP3 expression that predominantly was made up of FOXP3?2. FOXP3?2 induced specific transcription of GARP, which functions by tethering the immunosuppressive cytokine TGF-ß to the cell membrane of activated Treg cells. RT-PCR was used to determine the impact of alternative splicing of FOXP3 in relation with atherosclerotic plaque stability in a cohort of over 150 patients that underwent carotid endarterectomy. Plaque instability was associated with a lower FOXP3?2 transcript usage, when comparing plaques from patients without symptoms and patients with occurrence of recent (<1 month) vascular symptoms including minor stoke, transient ischemic attack or amaurosis fugax. No difference was detected in total levels of FOXP3 mRNA between these two groups. Conclusions - These results suggest that activated Treg cells suppress the atherosclerotic disease process and that FOXP3?2 controls a transcriptional program that acts protectively in human atherosclerotic plaques. Overall design: In this experiment we have analyzed 3 groups of each 3 biological repliactes equalling 9 samples in total.

Publication Title

Alternative Splicing of <i>FOXP3</i> Controls Regulatory T Cell Effector Functions and Is Associated With Human Atherosclerotic Plaque Stability.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE34723
Gene Expression Commons: an open platform for absolute gene expression profiling
  • organism-icon Mus musculus
  • sample-icon 101 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profiling using microarray has been limited to profiling of differentially expressed genes at comparison setting since probesets for different genes have different sensitivities. We overcome this limitation by using a very large number of varied microarray datasets as a common reference, so that statistical attributes of each probeset, such as dynamic range or a threshold between low and high expression can be reliably discovered through meta-analysis. This strategy is implemented in web-based platform named Gene Expression Commons (http://gexc.stanford.edu/ ) with datasets of 39 distinct highly purified mouse hematopoietic stem/progenitor/functional cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, any scientist can explore gene expression of any gene, search by expression pattern of interest, submit their own microarray datasets, and design their own working models.

Publication Title

Gene Expression Commons: an open platform for absolute gene expression profiling.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE77078
Neonatal bone marrow stroma
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Prospectively isolated neonatal bone marrow stroma and endothelium

Publication Title

Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44244
PAX5 overexpression is not enough to reestablish the mature B-cell phenotype in classical Hodgkin lymphoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In lymphomas derived from mature B cells the expression of the transcription factor PAX5 is maintained whereas classical Hodgkin lymphoma displays significantly reduced PAX5 expression despite its derivation from mature B cells. To elucidate the functional role of PAX5 in classical Hodgkin lymphoma, we re-established the PAX5 expression in the Hodgkin cell line L428 with and without epigenetic modulation. To this end, we stably transfected the Hodgkin cell line L428 with an inducible PAX5 expression construct. Although the overexpressed PAX5 was transcriptionally active as demonstrated by synthetic reporter constructs, no induction of the B-cell phenotype was achieved. PAX5 chromatin immunoprecipitation with subsequent next generation sequencing in B-cell lines and the PAX5 overexpressing L428 cell line showed different binding patterns. Since epigenetic restrictions might affect PAX5 binding, combined DNA demethylation and histone acetylation was performed. However, no re-expression of B-cell genes was observed also under these conditions. Thus, PAX5 is not sufficient for the re-activation of the B-cell program in Hodgkin cells despite epigenetic opening of the chromatin. This clearly indicates that the repression of the B-cell identity of the Hodgkin cells is caused and secured by complex molecular mechanisms.

Publication Title

PAX5 overexpression is not enough to reestablish the mature B-cell phenotype in classical Hodgkin lymphoma.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE6772
Comparison of gene expression data from human and mouse breast cancers
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2), Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparison of gene expression data from human and mouse breast cancers: identification of a conserved breast tumor gene set.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact