refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE70262
The impact of P53 loss on transcriptome changes following loss of Apc in the intestine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.

Publication Title

A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37369
Caco-2 cell gene expression following co-culture with Lactobacillus casei and Bifidobacterium breve
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To characterize how symbiotic bacteria affect the lolecular and cellular mechanisms of epithelial homeostasis, human colonic Caco-2 cells

Publication Title

Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9785
Expression data from Newborn mice infected with Shigella flexneri
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

In order to identify the developmental changes controlling the switch from disease susceptibility to resistance, we performed global gene expression analysis on non-infected and infected intestinal tissues taken from 4-day- and 7-day-old animals.

Publication Title

Maturation of paneth cells induces the refractory state of newborn mice to Shigella infection.

Sample Metadata Fields

Age

View Samples
accession-icon GSE62035
The DNMT1 associated lncRNA Dali is an epigenetic regulator of neural differentiation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The long non-coding RNA Dali is an epigenetic regulator of neural differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE8636
Intestinal xenotransplants infected with Shigella
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

to analyse the transcriptomic response of human intestinal tissue engrafted in SCID mice to Shigella infection

Publication Title

Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62033
The DNMT1 associated lncRNA Dali is an epigenetic regulator of neural differentiation [3]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.

Publication Title

The long non-coding RNA Dali is an epigenetic regulator of neural differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE62031
The DNMT1 associated lncRNA Dali is an epigenetic regulator of neural differentiation [1]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.

Publication Title

The long non-coding RNA Dali is an epigenetic regulator of neural differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE62032
The DNMT1 associated lncRNA Dali is an epigenetic regulator of neural differentiation [2]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.

Publication Title

The long non-coding RNA Dali is an epigenetic regulator of neural differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE52571
The long non-coding RNA Paupar regulates the expression of both local and distal genes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The long non-coding RNA Paupar regulates the expression of both local and distal genes.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE6082
An injected bacterial effector targets chromatin access for NF-kB as a strategy to shape transcription of immune genes
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Phosphorylation of histone H3 at Serine 10 emerges as a mechanism increasing chromatin accessibility of the transcription factor NF-kB for a particular set of immune genes. Here we report that a bacterial pathogen uses this strategy to shape the transcriptional response of infected host cells. We identify the Shigella flexneri type III protein effector OspF as a Dual Specific Phosphatase. OspF dephosphorylates MAP kinases within the nucleus impairing histone H3 phosphorylation at Serine 10 in a gene-specific manner. Therefore, OspF reprograms the transcriptional response for inactivation of a subset of NF-kB responsive genes. This regulation leads to repression of polymorphonuclear leukocytes recruitment in infected tissues. Thus, pathogens have evolved the ability to precisely modulate host cell epigenetic information as a strategy to repress innate immunity.

Publication Title

An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact