refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE43974
Pathways for intervention to optimize donor organ quality uncovered: a genome wide gene expression study
  • organism-icon Homo sapiens
  • sample-icon 554 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Background: Strategies to improve long term renal allograft survival have been directed to recipient dependent mechanisms of renal allograft injury. In contrast, no such efforts have been made to optimize organ quality in the donor. In order to get insight into the deleterious gene pathways expressed at different time points during deceased kidney transplantation, transcriptomics was performed on kidney biopsies from a large cohort of deceased kidney transplants.

Publication Title

Hypoxia and Complement-and-Coagulation Pathways in the Deceased Organ Donor as the Major Target for Intervention to Improve Renal Allograft Outcome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP045632
Rapid neurogenesis through transcriptional activation in human stem cell (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two murine Neurogenin transcription factors in human induced pluripotent stem cells, and obtained neurons with bipolar morphology in four days at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the transition from stem cell to neuron. These profiles were then analyzed to identify the regulatory networks underlying the differentiation of the neurons. Overall design: Paired end RNA sequencing of iPS cells (PGP1) at 0, 1, 3, and 4 days post- doxycycline induction of murine NGN1 and NGN2. This was done using an Illumina HiSeq, and reads were aligned to hg19

Publication Title

Rapid neurogenesis through transcriptional activation in human stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44076
Gene expression data from healthy, adjacent normal and tumor colon cells
  • organism-icon Homo sapiens
  • sample-icon 246 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Gene expression profiles of paired normal adjacent mucosa and tumor samples from 98 individuals and 50 healthy colon mucosae, were obtained through Affymetrix Human Genome U219 Arrays. This dataset is in the context of the COLONOMICS project and to query additional information you can visit the project website www.colonomics.org.

Publication Title

Discovery and validation of new potential biomarkers for early detection of colon cancer.

Sample Metadata Fields

Sex, Age, Disease, Subject

View Samples
accession-icon GSE68889
Human aldosterone producing cell clusters, zona glomerulosa, zona fasciculata, and zona reticularis, from adrenal glands
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to analyze the transcriptome characteristics of aldosterone producing cell clusters (APCC) we compared transcript abundances of APCC, zona glomerulosa (ZG), zona fasciculata (ZF), and zona reticularis (ZR), from adrenal glands obtained from 4 kidney transplantation donors. The frozen adrenal glands in O.C.T. compound were cut into 7um sections, and every 10-th section immunostained for aldosterone synthase (CYP11B2). The remaining sections were stained with cresyl violet and used for laser-capture microdissection of tissue to use in the array assays. APCC and ZG samples were captured from CYP11B2 positive regions based on the CYP11B2-stained sections. ZF and ZR were captured from lipid-rich cells in the middle layer and compact cells outside of the medulla, respectively. RNA was isolated using PicoPure RNA isolation kits (Molecular Devices, Sunnyvale, CA). 1-10 ng total RNA was reverse-transcribed and amplified with the Ovation Pico WTA System V2 (NuGEN Technologies, San Carlos, CA). cDNA was purified using QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and biotin-labeled using Encore Biotin Module (NuGEN Technologies), followed by hybridization to GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix, Santa Clara, CA). Expression values were calculated using the robust multi-array average method (RMA). This resulted in base-2 log-transformed data for each of the 4 tissues from each of the 4 people. In addition to the raw and processed data we also supply a supplementary Excel file holding the data and some statistical analysis, which has features to make simple graphs, and holds probe-set annotation that we used at that time (users may wish to obtain new annotation though). We fit two-way ANOVA models with terms for 4 tissues and 4 people, and compared each probe-set between every pair of tissues using F-tests for pairwise contrasts. We modeled people effects since they were not negligible. The supplement shows how to calculate the tests.

Publication Title

Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP108852
Genome-scale Activation Screen Identifies a LncRNA Locus Regulating a Gene Neighborhood [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 133 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The mammalian genome contains thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to play critical roles in diverse cellular processes through a variety of mechanisms. While some lncRNA loci encode RNAs that act non-locally (in trans), emerging evidence indicates that many lncRNA loci act locally (in cis) to regulate expression of nearby genes—for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. To address these challenges, we developed a genome-scale CRISPR-Cas9 activation screen targeting more than 10,000 lncRNA transcriptional start sites (TSSs) to identify noncoding loci that influence a phenotype of interest. We found 11 novel lncRNA loci that, upon recruitment of an activator, each mediate BRAF inhibitor resistance in melanoma. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation results in dosage-dependent activation of four neighboring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit to systematically discover functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function. Overall design: RNA-seq on A375 cells overexpressing candidate lncRNA or protein-coding gene.

Publication Title

Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP076139
ATAC-seq data from 3 cancer cell lines and RNA-seq data from 1 cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

RNA-seq and ATAC-seq data to understand how gene regulation and chromatin accessibility correlates with function enrichment in CRISPR screen for melanoma drug resistance

Publication Title

Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69306
Significant obesity associated gene expression changes are in the stomach but not intestines in obese mice
  • organism-icon Mus musculus
  • sample-icon 129 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The gastrointestinal (GI) tract can have significant impact on the regulation of the whole body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analyses in different parts of the GI tract of two obese mouse models: ob/ob and high-fat diet (HFD) fed mice. Compared to their lean controls, both obese mouse groups had significant amount of gene expression changes in the stomach (ob/ob: 959; HFD: 542), much more than the number of changes in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes and insulin resistance. In addition, the gene expression profile strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity.

Publication Title

Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70262
The impact of P53 loss on transcriptome changes following loss of Apc in the intestine
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BACKGROUND: p53 is an important tumor suppressor with a known role in the later stages of colorectal cancer, but its relevance to the early stages of neoplastic initiation remains somewhat unclear. Although p53-dependent regulation of Wnt signalling activity is known to occur, the importance of these regulatory mechanisms during the early stages of intestinal neoplasia has not been demonstrated.

Publication Title

A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37369
Caco-2 cell gene expression following co-culture with Lactobacillus casei and Bifidobacterium breve
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To characterize how symbiotic bacteria affect the lolecular and cellular mechanisms of epithelial homeostasis, human colonic Caco-2 cells

Publication Title

Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056432
A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks
  • organism-icon Mus musculus
  • sample-icon 656 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We introduced genome-wide pooled CRISPR-Cas9 libraries into primary mouse dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (TNF) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the TLR4 pathway. We found many of the known regulators of TLR4 signaling, as well as dozens of previously unknown candidates that we validated. Overall design: We used stain base phenotype (staining for TNF) in order to search for negative and positive regulators of LPS response in differentiated BMDCs

Publication Title

A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact