refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 144 results
Sort by

Filters

Technology

Platform

accession-icon SRP093643
Allelic expression in tibial growth plates from 21 day old C57BL/6J x CAST/EiJ F1s
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We have identified candidate genes from the Feml2 QTL influencing femur length through allele specific expression analysis of growth plates in C57BL/6J x CAST/EiJ F1 hybrids. This work provides the foundation to identify novel genes affecting bone geometry. Overall design: total RNA sequencing in 7 male C57BL/6JxCAST F1s

Publication Title

Genetic Dissection of a QTL Affecting Bone Geometry.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP072302
Next generation sequencing facilitates quantitative analysis of changes in mRNA after knock-down of putative master regulators of the breast cancer metastasis transcriptome.
  • organism-icon Homo sapiens
  • sample-icon 137 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: To identify regulatory proteins that are potential drivers of a coordinated breast cancer metastasis gene expression signatures. Methods: Knockdown of target genes in breast cancer cell lines was achieved using scramble and/or gene-specific siRNA (ON-TARGET SMARTpool, Thermo Scientific) and Lipofectamine RNAiMAX. 48h post transfection, total RNA was isolated from cell lines using the RNeasy Plus mini prep kit (Qiagen). Nucleic acid quality was determined with the Agilent 2100 Bioanalyzer. RNA Sequencing was also performed at the New York Genome Center (Manhattan, NY, USA) using a HiSeq 2500 Ultra-High-Throughput Sequencing System (Illumina, San Diego, CA, USA). Results: Raw reads in the fastq format were aligned to Human Genome HG19 using the RNA-seq STAR aligner version 2.4.0d (http://www.ncbi.nlm.nih.gov/pubmed/23104886, http://www.ncbi.nlm.nih.gov/pubmed/26334920) as recommended by user manual downloaded along with the software. STAR aligner was chosen for mapping accuracy and speed (http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html). Mapped reads for each sample were counted for each gene in annotation files in GTF format (gencode.v19.annotation.gtf available for download from GENECODE website (http://www.gencodegenes.org/releases/19.html)) using the FeatureCounts read summarization program (http://www.ncbi.nlm.nih.gov/pubmed/?term=24227677) following the user guide (http://bioinf.wehi.edu.au/subread-package/SubreadUsersGuide.pdf). Individual count files were merged to generate the raw-counts matrix by an in-house R script, normalized to account for differences in library size and the variance was stabilized by fitting the dispersion to a negative-binomial distribution as implemented in the DESeq R package (http://bioconductor.org/packages/release/bioc/html/DESeq.html)(Anders and Huber, 2010). Conclusions: Our data suggest that targeting keystone proteins in the breast cancer metastasis transcriptome can effectively collapse transcriptional hierarchies necessary for metastasis formation, thus representing a formidable cancer intervention strategy. Overall design: Examination of mRNA profiling of breast cancer cell lines after knock-down of putative master regulators of the breast cancer metastasis transcriptome

Publication Title

An Integrated Systems Biology Approach Identifies TRIM25 as a Key Determinant of Breast Cancer Metastasis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE41146
Expression data from uninfected and VSV-infected Drosophila cells at 4 hours post-infection
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Expression profiling of rapidly-induced genes upon VSV infection at 4 hours post-infection in Drosophila cells

Publication Title

Transcriptional pausing controls a rapid antiviral innate immune response in Drosophila.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE41242
Global analysis of Cdk9-dependence for VSV-induced genes in Drosophila cells
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

To determine the Cdk9 targets of VSV-induced genes in Drosophila cells at 4 hours post-infection

Publication Title

Transcriptional pausing controls a rapid antiviral innate immune response in Drosophila.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE53225
Expression data from miR-92 over-expressing R26MER/MER mouse embryonic fibroblast (MEFs)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

miR-92 enhances c-Myc induced apoptosis. In the R26MER/MER mouse embryonic fibroblasts (MEFs), a switchable variant of Myc, MycERT2, was knocked into the genomic region downstream of the constitutive Rosa26 promoter, allowing acute activation of c-Myc by 4-OHT-induced nuclear translocation. This in vitro system nicely recapitulates c-Myc-induced apoptosis, as activated MycERT2 induces strong p53-dependent apoptosis in response to serum starvation. Enforced miR-92 expression in three independent R26MER/MER MEF lines significantly enhanced Myc-induced apoptosis.

Publication Title

A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31049
Circadian temporal profiling of MMH-D3 hepatocytes
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The circadian clock generates daily rhythms in mammalian liver processes, such as glucose and lipid homeostasis, xenobiotic metabolism, and regeneration. The mechanisms governing these rhythms are not well understood, particularly the distinct contributions of the cell-autonomous clock and central pacemaker to rhythmic liver physiology. Through microarray expression profiling in MMH-D3 hepatocytes, we identified over 1,000 transcripts that exhibit circadian oscillations, demonstrating that many rhythms can be driven by the cell-autonomous clock and that MMH-D3 is a valid circadian model system. The genes represented by these circadian transcripts displayed both co-phasic and anti-phasic organization within a protein-protein interaction network, suggesting the existence of competition for binding sites or partners by genes of disparate transcriptional phases. Multiple pathways displayed enrichment in MMH-D3 circadian transcripts, including the polyamine synthesis module of the glutathione metabolic pathway. The polyamine synthesis module, which is highly associated with cell proliferation and whose products are required for initiation of liver regeneration, includes enzymes whose transcripts exhibit circadian oscillations, such as ornithine decarboxylase (Odc1) and spermidine synthase (Srm). Metabolic profiling revealed that the enzymatic product of SRM, spermidine, cycles as well. Thus, the cell-autonomous hepatocyte clock can drive a significant amount of transcriptional rhythms and orchestrate physiologically relevant modules such as polyamine synthesis.

Publication Title

Cell-autonomous circadian clock of hepatocytes drives rhythms in transcription and polyamine synthesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE32564
Genes affected upon dsRNA knockdown treatment for nbr/CG9247 in Drosophila DL1 cells and small RNA profiling in Drosophila wild-type and nbr[f02257] mutants
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE32683
Genes affected upon dsRNA knockdown treatment for nbr/CG9247 in Drosophila DL1 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

nbr/CG9247 gene function regulates the length of the 3'end of miRNAs.

Publication Title

The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP008774
Small RNA profiling in Drosophila wild-type and nbr[f02257] mutants
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

nbr/CG9247 gene regulates 3''end heterogeneity of a subset of miRNAs. It is not clear how broad this effect is on small RNA population. To address this, we compared small RNA population in wild-type and tmr[f02257] mutants. This approach identified more miRNAs whose 3''end heterogeneity was affected in nbr[f02257] mutants. Overall design: 2-3 day old control (w homogeneous strain Bloomington stock center 5905) and nbr[f02257] null mutant flies were collected. nbr[f02257] line was in the homogenous (Bloomington stock center stock 5905) background through a minimum of 5 backcrosses. Total RNA from whole flies was extracted using TRIzol reagent (Invitrogen). 40ug of total RNA from each genotype was used for small RNA library preparation with Small RNA Sample Prep kit (v1.5) (Illumina).

Publication Title

The exoribonuclease Nibbler controls 3' end processing of microRNAs in Drosophila.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE14002
J82 human bladder cell line treated with frankincense oil
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Frankincense oil is prepared from aromatic hardened wood resin obtained by tapping Boswellia trees. For thousands of years, it has been important both socially and economically as an ingredient in incense and perfumes. Frankincense oil is a botanical oil distillate made from fermented plants that contains boswellic acid, a component known to have anti-neoplastic properties. We evaluated frankincense oil-induced cytotoxicity in bladder cancer cells. With a window of concentration, frankincense oil suppressed cell viability and induced cytotoxicity in bladder transitional carcinoma J82 cells but not normal bladder urothelial UROtsa cells immortalized with SV40 large T antigen. However, frankincense oil-induced J82 cell death did not result in DNA fragmentation. Microarray and bioinformatics analysis confirmed that frankincense oil activated cell cycle arrest, suppressed cell proliferation, and activated apoptosis in J82 cells through a series of potential pathways. These finding suggest that bladder cancer can be treated through intravesical administration of pharmaceutical agents similar to direct application on melanoma.

Publication Title

Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact