refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12 results
Sort by

Filters

Technology

Platform

accession-icon GSE30991
The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE30990
The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset (RNAi)
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The MOF-containing NSL complex binds to many but not all promoters of active genes and potentially contributes to their proper gene expression. It is currently unknown what determines whether an active gene is bound or not. Here, we provide evidence that the NSL complex primarily targets active promoters of most housekeeping genes. There, it co-localizes with the chromatin remodeler NURF and the histone methyltransferase Trithorax. Moreover, despite binding to most housekeeping genes, the NSL complex regulates only a subset of them, which are depleted for certain insulator binding-proteins and enriched for the core promoter motif Ohler 5. We suggest that the combination of general chromatin factors and core promoter motifs is predictive for whether a housekeeping gene is transcriptionally regulated by the NSL complex.

Publication Title

The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP028170
Mapping of nascent RNA upon release of DRB in WT and KD of RECQL5
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Global Run-On has been performed on WT or KD for RECQL5 cells after release from DRB. When RECQL5 is knocked-down the transcriptional wave front is more advanced, suggesting that transcription is faster. Overall design: Constitutive knock-down cell lines expressing or not endogenous levels of shRNA resistant RECQL5 under a Doxycycline inducible promoter were treated with high doses of DRB to block transcription. Upon release into fresh medium we were able to follow how much and how fast the RNA Pol II progresses through genes by mapping nascent RNA by Run-On. The experiment was performed in two cell line clones.

Publication Title

RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE35480
Analysis of the implication of the DBIRD complex (DBC1 and ZNF326/ZIRD) in gene expression and alternative splicing
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Alternative mRNA splicing is the main reason vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription and the rate of transcript elongation has a profound effect on splicing. As the nascent pre-mRNA emerges from transcribing RNA polymerase II (RNAPII), it is assembled into a messenger ribonucleoprotein (mRNP) particle that represents its functional form, and the composition of which determines the fate of the mature transcript4. However, factors that connect the transcribing polymerase with the mRNP particle and help integrate transcript elongation with mRNA splicing remain obscure. Here, we characterized the interactome of chromatin-associated mRNP particles and thereby identified Deleted in Breast Cancer 1 (DBC1) and a protein we named ZIRD. These proteins are subunits of a novel protein complex, named DBIRD, which binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in A/T-rich DNA, and is present at the affected exons. RNAi-mediated DBIRD depletion results in region-specific decreases in transcript elongation, particularly across areas encompassing affected exons. These data indicate that DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with regulation of alternative splicing.

Publication Title

DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE41905
A global transcriptome analysis of keratinocytes upon suppression of endogenous microRNA-31
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

MiR-31 is one of the most highly overexpressed miRNAs in psoriasis skin; however, its biological role in the disease has not been studied. Here we show that miR-31 is markedly overexpressed in psoriasis keratinocytes. To study the biological role of miR-31 in keratinocytes, we transfected miR-31 hairpin inhibitor (anti-miR-31) into primary human keratinocytes to inhibit endogenous miR-31. We performed a global transcriptome analysis of keratinocytes upon suppression of endogenous miR-31 using Affymetrix arrays.

Publication Title

MicroRNA-31 is overexpressed in psoriasis and modulates inflammatory cytokine and chemokine production in keratinocytes via targeting serine/threonine kinase 40.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP045774
Dopamine Signaling leads to loss of Polycomb Repression and Aberrant Gene [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells and through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark, H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminal differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing the dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinsons disease. Overall design: 12 mice were used for RNAseq, 4 conditions, 3 mice per condition.

Publication Title

Dopamine signaling leads to loss of Polycomb repression and aberrant gene activation in experimental parkinsonism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76172
Treatment of bone marrow-derived macrophages with hFc-FNDC4 recombinant protein
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

FNDC4 is a novel secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in various mouse models of inflammation as well as in human inflammatory conditions. Specifically, subjects with inflammatory bowel disease show increased FNDC4 levels locally at inflamed sites of the intestine. Interestingly, administration of recombinant FNDC4 during colitis development in mice resulted in markedly reduced disease severity compared to mice injected with a control protein. Conversely, mice that lacked Fndc4 showed increased colitis severity. Analysis of binding of FNDC4 to different immune cell types revealed strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro resulted in reduced phagocytosis, improved survival and reduced pro-inflammatory chemokine expression. Hence, treatment with FNDC4 resulted in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized a novel factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases.

Publication Title

FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE26878
Digital gene and expression profiling of primary acute lymphoblastic leukemia (ALL) cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Digital gene expression profiling of primary acute lymphoblastic leukemia cells.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE26865
Gene expression profiling of primary acute lymphoblastic leukemia (ALL) cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of this study was to benchmark digital gene expression (DGE) profiling by massively parallel sequencing against the most commonly used method for gene expression analysis. We compared the DGE levels to expression levels from Affymetrix arrays. Data from Affymetrix Human Genome U133 plus 2.0 GeneChips was available for 12 of the 21 RNA samples from ALL patient cells analyzed by DGE.

Publication Title

Digital gene expression profiling of primary acute lymphoblastic leukemia cells.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE54293
Akt inhibitor MK2206 prevents influenza A(H1N1)pdm09 virus infection in vitro
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The influenza A(H1N1)pdm09 virus caused a global flu pandemic in 2009 and contributes to seasonal epidemics. Different treatment and prevention options for influenza have been developed and applied with limited success. Here we report that an Akt inhibitor MK2206 possesses potent antiviral activity against influenza A(H1N1)pdm09 virus in vitro. We showed that MK2206 blocks the entry of different A(H1N1)pdm09 strains into cells. Moreover, MK2206 prevented A(H1N1)pdm09-mediated activation of cellular signaling pathways and the development of cellular immune responses. Importantly, A(H1N1)pdm09 virus was unable to develop resistance to MK2206. Thus, MK2206 is a potent anti-influenza A(H1N1)pdm09 agent.

Publication Title

Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro.

Sample Metadata Fields

Specimen part, Cell line

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact