refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 595 results
Sort by

Filters

Technology

Platform

accession-icon SRP057149
Characterization of Type I Interferon pathway during Hepatic Differentiation of Human Pluripotent Stem Cells and hepatitis C virus infection
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long term survival of engrafting cells in the body, not only do the cells have to execute liverspecific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 postdifferentiation), hepatoblast (day 15) and immature hepatocytes (day 21) from human embryonic stem cells (hESC). Day 5, 15 and 21 cells were stimulated with IFN-a and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-a treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFNstimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatocytes upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs – LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. Overall design: 12 samples total, 4 samples in each time point (day 5, day 15, day 21). Each group of 4 within each time point has 2 control and 2 treatment samples in which the cells were stimulated with human interferon-alpha A (R and D Systems) at a concentration of 5000 IU for 6 hours.

Publication Title

Characterization of type I interferon pathway during hepatic differentiation of human pluripotent stem cells and hepatitis C virus infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP074494
RNA-seq of hESC samples upon loss of UPF1.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs) demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-b and BMP signaling, which we found NMD acts through to influence definitive endoderm vs. mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages. Overall design: Examination of differential gene expression in hESCs upon loss of UPF1.

Publication Title

Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE12682
Expression data from Human Kidney (HK) samples
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Males are 50% more likely to develop end stage kidney failure compared to women. In this study we wanted to find out the molecular mechanism responsible for this increased risk. We collected kidney samples from patients with and without kidney disease and performed a comprehensive gene expression analysis in healthy and diseased male and female kidneys.

Publication Title

Human and murine kidneys show gender- and species-specific gene expression differences in response to injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12683
Expression data from Balb/c mice kidney samples
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Males are 50% more likely to develop end stage kidney failure compared to women. As a model of the human condition we analyzed gene expression changes in healthy and diseased mouse kidneys.

Publication Title

Human and murine kidneys show gender- and species-specific gene expression differences in response to injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29233
Genes regulated by TGF-beta in bovine articular chondrocytes
  • organism-icon Bos taurus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Bovine articular chondrocytes were grown in micromass culture and were either untreated or treated with 5 ng TGF-b1/ml for 8 hours to identify genes regulated by TGF-b.

Publication Title

Altered responsiveness to TGF-β results in reduced Papss2 expression and alterations in the biomechanical properties of mouse articular cartilage.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP076029
Identification of a Transcription Factor that Promotes Spermatogonial Stem Cell Establishment
  • organism-icon Mus musculus
  • sample-icon 423 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Spermatogonial stem cells (SSCs) are critical for maintaining spermatogenesis throughout adult life. Little is known about how SSCs are first generated. Here, we report the identification of a transcription factor—RHOX10—that promotes the initial establishment of SSCs. We were led to this discovery because we found that conditional loss of a large X-linked gene cluster comprised of 33 related homeobox genes, including Rhox10, causes defects predicted if SSCs fail to be generated or maintained. Remarkably, KO of only Rhox10 elicits SSC-related defects indistinguishable from KO of the entire gene cluster. Using a battery of approaches, including single cell-RNAseq analysis, we determined that loss of Rhox10 causes accumulation of undifferentiated germ cells—Pro-spermatogonia (ProSG)—at a time when they normally would form SSCs. The identification of a transcription factor that drives the initial generation of SSCs has potential therapeutic applications for infertility. Overall design: Single cell RNA-seq analysis of ID4-positive testicular cells from Wildtype and Rhox10 knockout mice (Postnatal day 3 and 7)

Publication Title

The Homeobox Transcription Factor RHOX10 Drives Mouse Spermatogonial Stem Cell Establishment.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE16462
Expression data from Chd1-deficient mouse ES cells (E14 cell lines) and genome-wide binding of Chd1 in parental ES cells
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to study the effect of Chd1 loss of function in mouse ES cells.

Publication Title

Chd1 regulates open chromatin and pluripotency of embryonic stem cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP017484
RNA-Seq of head tissue from Drosophila melanogaster Wild Type and Adar5G1dAdar-/- mutant
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Purpose: Validation of Drosophila A-to-I editing sites Methods: We collected heads of 5 day old male dAdar-/- mutant (y, Adar5G1, w)26 and wild type (w1118) flies. Poly(A)+ RNA was used to prepare RNA-seq libraries which were subsequently sequenced single-end by an Illumina GAII Results:We builded a framework to identify RNA editing events using RNA-seq data alone in Drosophila. To validate whether the identified A-to-G sites were bona fide A-to-I editing events, we performed RNA-seq for the D.melanogaster wild-type strain (w1118) and for the Adar5G1 null mutant that eliminates RNA editing. We found that our method achieved high accuracy; 98.2% of all A-to-G sites showed only adenosine in the Adar5G1 sample Conclusions: We anticipate that our method will be very effective in the future to identify RNA editing events in different species. Overall design: mRNA profiles of heads of 5 day old male dAdar-/- mutant (y, Adar5G1, w)26 and wild type (w1118) flies

Publication Title

Identifying RNA editing sites using RNA sequencing data alone.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE56563
SIRT6 regulates glucose metabolism and glutamatergic synapse in the mouse retina
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Microarray analysis on total retinal RNA from 15 day old Sirt6 wild-type (WT) and knock-out (KO) mice.

Publication Title

SIRT6 is required for normal retinal function.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE88861
Cells to Investigate How ACTL6A and p63 Activate Hippo-YAP in SCC
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ACTL6A Is Co-Amplified with p63 in Squamous Cell Carcinoma to Drive YAP Activation, Regenerative Proliferation, and Poor Prognosis.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact