refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1088 results
Sort by

Filters

Technology

Platform

accession-icon GSE56736
Genome wide expession analysis of mouse bone marrow derive macrophage (Bmdm) cell stimulated with cytokine and infected with mycobacterium tuberculosis
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Bmdm cells were differentiated for 10 days and harvested and culture in six well plate followed by cytokine stimulation after 24 hrs cells were infected with mycobacterium tuberculosis to identify the host factors involved in infection.

Publication Title

IL-4Rα-dependent alternative activation of macrophages is not decisive for Mycobacterium tuberculosis pathology and bacterial burden in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE67158
Eomes+ natural Th1 (nTh1) T cells share functional features with classical Th1 (cTh1) cells.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Identification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.

Publication Title

Thymic low affinity/avidity interaction selects natural Th1 cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE63038
Gene expression profiling of the human natural killer cell response to FcR activation in the presence of IL-12
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The majority of NK cells (~90%) are phenotypically characterized as CD56dimCD16+, while the remaining are CD56brightCD16-. The cytotoxic CD56dimCD16+ NK subset expresses higher levels of chemokine receptors, and therefore is preferentially recruited to sites of inflammation. Encounters between CD56dimCD16+ NK cells with target cells and locally secreted inflammatory cytokines synergize to induce activation of this subset, leading to dramatically increased cytotoxic activity against target cells and abundant pro-inflammatory cytokine production often equivalent to that of the CD56brightCD16- population. The early recruitment of activation of CD56dimCD16+ NK cells to sites of inflammation raises many important questions regarding the potential immune functions of these cells that extend beyond their cytotoxic capabilities. This study has sought to elucidate the genetic profile of activated CD56dimCD16+ NK cells via a series of laboratory-based approaches coupled with a bioinformatics persective.

Publication Title

Gene expression profiling of the human natural killer cell response to Fc receptor activation: unique enhancement in the presence of interleukin-12.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE53016
Microarray Analysis of myb80 versus Wild-Type Anthers
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis thaliana MYB80 (formerly MYB103) is expressed in the tapetum and microspores between anther developmental stages 6 and 10. MYB80 encodes a MYB transcription factor that is essential for tapetal and pollen development. In order to identify the genes regulated by MYB80, microarray technology was employed to analyze the expression levels of genes that were differentially regulated in the myb80 mutant and wild- type anthers.

Publication Title

The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59210
Genome wide expression analysis of bone marrow derived macrophage cells (BMDMs) stimulated with IFNg and effect of Batf2 knockdown in BMDMs stimulated with IFNg
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59207
Genome wide expession analysis of mouse bone marrow derive macrophage (Bmdm) cell stimulated with IFNg
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Bmdm cells were differentiated for 10 days and harvested and culture in six well plate followed by cytokine stimulation

Publication Title

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59209
Genome wide expession analysis of effect of Batf2 knock down in bone marrow derived macrophage cells stimulated with IFNg
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Bmdm cells were differentiated for 10 days and harvested and culture in six well plate followed by transfection with Batf2 ShRNA.

Publication Title

Batf2/Irf1 induces inflammatory responses in classically activated macrophages, lipopolysaccharides, and mycobacterial infection.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP040278
Widespread N6-methyladenosine-dependent RNA Structural Switches Regulate RNA-Protein Interactions
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We show that N6-methyladenosine (m6A), the most abundant internal modification in mRNA/lncRNA with still poorly characterized function, alters RNA structure to facilitate the access of RBM for heterogeneous nuclear ribonucleoprotein C (hnRNP C). We term this mechanism m6A-switch. Through combining PAR-CLIP with Me-RIP, we identify 39,060 m6A-switches among hnRNP C binding sites transcriptome-wide. We show that m6A-methyltransferases METTL3 or METTL14 knockdown decreases hnRNP C binding at 16,582 m6A-switches. Taken together, 2,798 m6A-switches of high confidence are identified to mediate RNA-hnRNP C interactions and affect diverse biological processes including cell cycle regulation. These findings reveal the biological importance of m6A and provide insights into the sophisticated regulation of RNA-RBP interactions through m6A-induced RNA structural remodeling. Overall design: Measure the m6A methylated hnRNP C binding sites transcriptome-wide by PARCLIP-MeRIP; measure the differential hnRNP C occupancies upon METTL3/METTL14 knockdown by PAR-CLIP; measure RNA abundance and splicing level changes upon HNRNPC, METTL3 and METTL14 knockdown

Publication Title

N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE148210
Microarray Analysis of ttg1 versus Wild-Type Developing Seeds
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

MYB-bHLH-TTG1 regulates Arabidopsis seed coat biosynthesis pathways directly and indirectly via multiple tiers of transcription factors

Publication Title

MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE6679
Staufen1 regulates a variety of mammalian transcripts
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

It is currently unknown how extensively the double-stranded RNA binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3 untranslated region (3UTR) of ARF1 mRNA has been shown to target ARF1 mRNA for Stau1-mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense-mediated mRNA decay factor Upf1 to the ARF1 3UTR by Stau1. Here, we use microarray analyses to examine changes in the abundance of cellular mRNAs that occur when Stau1 is depleted. Results indicate that 1.1% and 1.0% of the 11,569 HeLa-cell transcripts that were analyzed are, respectively, upregulated and downregulated at least two-fold in three independently performed experiments. Additionally, we localize the Stau1 binding site to the 3UTR of four mRNAs that we define as natural SMD targets. Together, these and substantiating results suggest that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.

Publication Title

Staufen1 regulates diverse classes of mammalian transcripts.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact