refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE84813
Exon level expression profile of MCF7 cells with p53 splice variant knocked out 4hr post 20gy irradiation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

In order to explore the funciton of p53 splice variant in DNA damage response, we utilized CRISPR-cas9 genome editing technique to specifically knock out this variant in MCF7 cells.

Publication Title

Identification of a DNA Damage-Induced Alternative Splicing Pathway That Regulates p53 and Cellular Senescence Markers.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE19151
Whole Blood Gene Expression Profiles Distinguish Patients with Single versus Recurrent Venous Thromboembolism
  • organism-icon Homo sapiens
  • sample-icon 132 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Venous thromboembolism (VTE) is a major cause of morbidity and mortality. Pulmonary embolism is a life threatening manifestation of VTE that occurs in at least half the patients on presentation. In addition, VTE recurs in up to 30% of patients after a standard course of anticoagulation, and there is not a reliable way of predicting recurrence. We investigated whether gene expression profiles of whole blood could distinguish patients with VTE from healthy controls, single VTE from those with recurrence, and DVT alone from those with PE. 70 adults with VTE on warfarin and 63 healthy controls were studied. Patients with antiphospholipid syndrome or cancer were excluded. Blood was collected in PAXgene tubes, RNA isolated, and gene expression profiles obtained using Affymetrix arrays. We developed a 50 gene model that distinguished healthy controls from subjects with VTE with excellent receiver operating characteristics (AUC 0.94; P < 0.0001). We also discovered a separate 50 gene model that distinguished subjects with a single VTE from those with recurrent VTE with good receiver operating characteristics (AUC 0.75; P=0.008). In contrast, we were unable to distinguish subjects with DVT from those with PE using gene expression profiles. Gene expression profiles of whole blood can distinguish subjects with VTE from healthy controls and subjects with a single VTE from those with recurrence. Additional studies should be performed to validate these results and develop diagnostic tests. Gene expression profiling is likely translatable to other thrombotic disorders(e.g., patients with cancer and VTE).

Publication Title

Whole blood gene expression analyses in patients with single versus recurrent venous thromboembolism.

Sample Metadata Fields

Sex, Age, Race

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact