refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon GSE30195
Gene expression profiling in myelodysplastic syndromes
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Myelodysplastic syndromes (MDS) are a heterogenous group of hematopoietic stem cell disorders characterized by dysplastic blood cell formation and peripheral blood cytopenias. Up to 30% of patients with MDS will progress to a highly chemotherapy-resistant secondary acute myeloid leukemia (sAML). We identified mutations in U2AF1 in MDS patients and patients with U2AF1 mutations are at an increased risk of developing sAML.

Publication Title

Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Race

View Samples
accession-icon GSE10448
mRNA Levels in the Rat Liver Display Strain-Specific, Hereditary and AHR-Dependent Components
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Background

Publication Title

mRNA levels in control rat liver display strain-specific, hereditary, and AHR-dependent components.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2825
Profiling of D-PA Induced Idiosyncratic Drug Reactions
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Idiosyncratic drug reactions (IDRs) cause significant morbidity and mortality. In an animal model of IDRs, 50-80% of Brown Norway rats exposed to D-penicillamine develop an autoimmune syndrome after several weeks of treatment. The symptoms of the IDR are similar to that observed in humans who take D-penicillamine. The mechanism of this reaction is unknown, and no effective biomarkers have been identified to predict susceptibility. We postulate that cell stress caused by drugs is required to initiate the response. We used a highthroughput approach to identify factors that might represent danger signals by profiling hepatic gene expression 6 h after dosing with D-penicillamine (150 mg/kg). Our results show that the drug-treated animals cluster into two distinct groups. One group exhibits substantial expression changes relative to control animals. The most significantly altered transcripts have a role in stress, energy metabolism, acute phase response, and inflammation. We used quantitative reverse transcriptase polymerase chain reaction to measure transcript levels in liver biopsies of 33 rats and found that resistant animals cluster together. This 'resistant' cluster of animals contains 87.5% (7/8) resistant animals but only 48% (12/25) 'sensitive' animals. This separation is statistically significant at the p 0.01 level.

Publication Title

Gene expression profiling in a model of D-penicillamine-induced autoimmunity in the Brown Norway rat: predictive value of early signs of danger.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE10083
Dioxin lethality: aryl hydrocarbon receptor (AHR)-mediated gene expression in a rat resistant model
  • organism-icon Rattus norvegicus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Major toxicities of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) result from dysregulation of gene expression mediated by the aryl hydrocarbon receptor (AHR). Dioxin-like chemicals alter expression of numerous genes in liver but the specific genes whose dysregulation leads to toxicities such as wasting, hepatotoxicity and lethality have not been identified. We searched for genes that are most likely to be key to dioxin toxicity by using gene expression arrays to contrast hepatic gene expression after TCDD treatment in dioxin-sensitive rats (that carry wildtype AHR) with gene expression in H/W(Kuopio) rats which are highly resistant to dioxin toxicity due to a major deletion in the AHR's transactivation domain (TAD). The total number of TCDD-responsive genes was smaller in rats with the AHRH/W genotype than in rats with wildtype AHR. However, genes in the classic AH gene battery such as CYP1A1, CYP1A2 and CYP1B1 remained fully responsive to TCDD in AHRH/W rats; thus the TAD deletion selectively interferes with expression of a subset of hepatic genes rather than abolishing global AHR-mediated responses. Genes in the following functional categories differ in response to TCDD between dioxin-sensitive rats and dioxin-resistant rats: fatty acid oxidation, metabolism (xenobiotic, alcohol, amino acid, and fatty acid), phosphate transport, regulation of steroid biosynthesis, nitrogen compound catabolism, and generation of precursor metabolites and energy. Many of these differentially-responsive genes are integral parts of pathways such as: protein degradation and synthesis, fatty acid metabolism and synthesis, cytokinesis, cell growth, and apoptosis which may be part of mechanisms which lead to TCDD-induced wasting, hepatotoxicity, tumors, and death. These differentially-responsive genes are worthy candidates for further mechanistic studies to test their role in mediating or protecting from major dioxin toxicities.

Publication Title

Aryl hydrocarbon receptor (AHR)-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10769
Conserved Transcriptional Response of Rodent Liver to TCDD: Mouse
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background

Publication Title

Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: comparison of rat and mouse.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10770
Conserved Transcriptional Response of Rodent Liver to TCDD: Rat
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Background

Publication Title

Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: comparison of rat and mouse.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9121
Genome-wide effects of acute progressive feed restriction in liver and white adipose tissue
  • organism-icon Rattus norvegicus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Acute progressive feed restriction (APFR) represents a specific form of caloric restriction in which feed availability is increasingly curtailed over a period of a few days to a few weeks. It is often used for control animals in toxicological and pharmacological studies on compounds causing body weight loss to equalize weight changes between experimental and control groups and thereby, intuitively, to also set their metabolic states to the same phase. However, scientific justification for this procedure is lacking. In the present study, we analyzed by DNA microarrays the impact on hepatic gene expression in rats of two APFR regimens that caused identical diminution of body weight (19%) but differed slightly in duration (4 vs. 10 days). In addition, white adipose tissue (WAT) was also subjected to the transcriptomic analysis on day-4. The data revealed that the two regimens led to distinct patterns of differentially expressed genes in liver, albeit some major pathways of energy metabolism were similarly affected (particularly fatty acid and amino acid catabolism). The reason for the divergence appeared to be entrainment by the longer APFR protocol of peripheral oscillator genes, which resulted in derailment of circadian rhythms and consequent interaction of altered diurnal fluctuations with metabolic adjustments in gene expression activities. WAT proved to be highly unresponsive to the 4-day APFR as only 17 mRNA levels were influenced by the treatment. This study demonstrates that body weight is a poor proxy of metabolic state and that the customary protocols of feed restriction can lead to rhythm entrainment.

Publication Title

Genome-wide effects of acute progressive feed restriction in liver and white adipose tissue.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10082
Aryl Hydrocarbon Receptor Regulates Distinct Dioxin-Dependent and Dioxin-Independent Gene Batteries
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Conventional biochemical and molecular techniques identified previously several genes whose expression is regulated by the aryl hydrocarbon receptor (AHR). We sought to map the complete spectrum of AHR-dependent genes in male adult liver using expression arrays to contrast mRNA profiles in Ahr-null mice (Ahr/) with those in mice with wild-type AHR (Ahr+/+). Transcript profiles were determined both in untreated mice and in mice treated 19 h earlier with 1000 g/kg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Expression of 456 ProbeSets was significantly altered by TCDD in an AHR-dependent manner, including members of the classic AHRE-I gene battery, such as Cyp1a1, Cyp1a2, Cyp1b1, and Nqo1. In the absence of exogenous ligand, AHR status alone affected expression of 392 ProbeSets, suggesting that the AHR has multiple functions in normal physiology. In Ahr/ mice, only 32 ProbeSets exhibited responses to TCDD, indicating that the AHR is required for virtually all transcriptional responses to dioxin exposure in liver. The flavin-containing monooxygenases, Fmo2 and Fmo3, considered previously to be uninducible, were highly induced by TCDD in an AHR-dependent manner. The estrogen receptor alpha as well as two estrogen-receptor-related genes (alpha and gamma) exhibit AHR-dependent expression, thereby extending cross-talk opportunities between the intensively studied AHR and estrogen receptor pathways. p53 binding sites are over-represented in genes down-regulated by TCDD, suggesting that TCDD inhibits p53 transcriptional activity. Overall, our study identifies a wide range of genes that depend on the AHR, either for constitutive expression or for response to TCDD.

Publication Title

Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4675
Microarray Analysis of the Developing Murine Prefrontal Cortex
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Abnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during post-natal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays. We observed changes in mRNA transcripts consistent with known post-natal morphological and biochemical events. Overall, most transcripts that changed significantly showed a progressive decrease in abundance after birth, with the majority of change between post-natal weeks 2 and 4. Genes with cell proliferative, cytoskeletal, extracellular matrix, plasma membrane lipid / transport, protein folding, and regulatory functions had decreases in mRNA levels. Quantitative PCR verified the microarray results for six selected genes: DNA methyltransferase 3A (Dnmt3a), procollagen, type III, alpha 1 (Col3a1), solute carrier family 16 (monocarboxylic acid transporters), member 1 (Slc16a1), MARCKS-like 1 (Marcksl1), nidogen 1 (Nid1) and 3-hydroxybutyrate dehydrogenase (heart, mitochondrial) (Bdh).

Publication Title

Microarray analysis of the developing cortex.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13513
Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats
  • organism-icon Rattus norvegicus
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a wide range of toxic effects in rodent species, all of which are mediated by a ligand-dependent transcription-factor, the aryl hydrocarbon receptor (AHR). The Han/Wistar (Kuopio) (H/W) strain shows exceptional resistance to many TCDD-induced toxicities; the LD50 of >9600 g/kg for H/W rats is higher than for any other wild-type mammal known. We have previously shown that this resistance primarily results from H/W rats expressing a variant AHR isoform that has a substantial portion of the AHR transactivation domain deleted. Despite this large deletion, H/W rats are not entirely refractory to the effects of TCDD; the variant AHR in these animals remains fully competent to up-regulate well-known dioxin-inducible genes. TCDD-sensitive (Long-Evans, L-E) and resistant (H/W) rats were treated with either corn-oil (with or without feed-restriction) or 100 g/kg TCDD for either four or ten days. Hepatic transcriptional profiling was done using microarrays, and was validated by RT-PCR analysis of 41 genes. . A core set of genes was altered in both strains at all time points tested, including CYP1A1, CYP1A2, CYP1B1, Nqo1, Aldh3a1, Tiparp, Exoc3, and Inmt. Outside this core, the strains differed significantly in the breadth of response: three-fold more genes were altered in L-E than H/W rats. At ten days almost all expressed genes were dysregulated in L-E rats, likely reflecting emerging toxic responses. Far fewer genes were affected by feed-restriction, suggesting that only a minority of the TCDD-induced changes are secondary to the wasting syndrome.

Publication Title

Hepatic transcriptomic responses to TCDD in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity.

Sample Metadata Fields

Sex

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact