refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 163 results
Sort by

Filters

Technology

Platform

accession-icon GSE50042
Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

We used transcription-profiling to identify mitogen-activated protein kinase (Mapk) signaling as an important regulator involved in the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes. We show in tissue culture that activation of Mapk signaling by elevation of intracellular levels of cAMP using administration of either dibutyryl-cAMP or inhibitors of the cAMP-hydrolyzing enzyme phosphodiesterase-4 (Pde4) enhances OPC differentiation. Finally, we demonstrate that systemic delivery of a Pde4 inhibitor leads to enhanced differentiation of OPCs within focal areas of toxin-induced demyelination and a consequent acceleration of remyelination.

Publication Title

Retinoid X receptor gamma signaling accelerates CNS remyelination.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28024
Human oocytes reprogram somatic cells to a pluripotent state
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Human oocytes reprogram somatic cells to a pluripotent state.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28022
Gene expression in blastomeres after transfer of somatic cells into human oocytes
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

The exchange of the oocyte's genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cell types affected in degenerative human diseases. Such cells, carrying the patient's genome, might be useful for cell replacement. Here we report that the development of human oocytes activated after genome exchange invariably arrests at the late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, they efficiently develop to the blastocyst stage. Human stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies the removal of the oocyte genome as the primary cause of developmental failure after genome exchange. Future work should focus on the critical elements that are associated with the human oocyte genome.

Publication Title

Human oocytes reprogram somatic cells to a pluripotent state.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27507
Gene expression in pluripotent stem cells derived after somatic cell genome transfer into human oocytes
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

The exchange of the oocytes genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cell types affected in degenerative human diseases. Such cells, carrying the patients genome, might be useful for cell replacement. Here we report that the development of human oocytes activated after genome exchange invariably arrests at the late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, they efficiently develop to the blastocyst stage. Human stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies the removal of the oocyte genome as the primary cause of developmental failure after genome exchange. Future work should focus on the critical elements that are associated with the human oocyte genome.

Publication Title

Human oocytes reprogram somatic cells to a pluripotent state.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47967
Cooperation of estrogen and oocytes on gene expression in mouse cumulus cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Oocyte-derived paracrine factors and estrogens cooperate to regulate the function and development of mouse cumulus cells.

Publication Title

Cooperative effects of 17β-estradiol and oocyte-derived paracrine factors on the transcriptome of mouse cumulus cells.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE95214
Ventral prostate in male F344 rats: Control vs. PhIP treatment
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The gene expression profling between Control and 300 mg/kg PhIP treatment in ventral prostate lobe of male F344 rats

Publication Title

Early detection of prostate carcinogens by immunohistochemistry of HMGB2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31837
Changes in mRNA Stability Associated with Cold Stress in Arabidopsis Cells
  • organism-icon Arabidopsis thaliana
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Control of mRNA half-life is a powerful strategy to adjust individual mRNA levels to various stress conditions, because the mRNA degradation rate controls not only the steady-state mRNA level but also the transition speed of mRNA levels. Here, we analyzed mRNA half-life changes in response to cold stress in Arabidopsis cells using genome-wide analysis, in which mRNA half-life measurements and transcriptome analysis were combined. Half-lives of average transcripts were determined to be elongated under cold conditions. Taking this general shift into account, we identified more than a thousand transcripts that were classified as relatively stabilized or relatively destabilized. The relatively stabilized class was predominantly observed in functional categories that included various regulators involved in transcriptional, post-transcriptional and post-translational processes. On the other hand, the relatively destabilized class was enriched in categories related to stress and hormonal response proteins, supporting the idea that rapid decay of mRNA is advanta- geous for swift responses to stress. In addition, pentatricopeptide repeat, cyclin-like F-box and Myb transcription factor protein families were significantly over-represented in the relatively destabilized class. The global analysis presented here demonstrates not only the importance of mRNA turn-over control in the cold stress response but also several structural characteristics that might be important in the control of mRNA stability.

Publication Title

Changes in mRNA stability associated with cold stress in Arabidopsis cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE51432
-Cryptoxanthin suppresses inflammatory gene expression in diet-induced nonalcoholic steatohepatitis in mice
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To evaluate the effect of -cryptoxanthin on diet-induced NASH, we fed a high-cholesterol and high-fat diet (CL diet) with or without 0.003% -cryptoxanthin to C56BL/6J mice for 12 weeks. After feeding, -cryptoxanthin attenuated fat accumulation, increases in Kupffer and activated stellate cells, and fibrosis in CL diet-induced NASH in the mice.

Publication Title

β-Cryptoxanthin alleviates diet-induced nonalcoholic steatohepatitis by suppressing inflammatory gene expression in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE48841
The Calcineurin-NFAT-Angiopoietin 2 signaling axis in lung endothelium is critical for the establishment of lung metastases
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The pre-metastatic niche is a pre-determined site of metastases, awaiting the influx of tumor cells. Here we demonstrate that the calcineurin-NFAT pathway is activated specifically in lung endothelium prior to the detection of tumor cells that preferentially metastasize to the lung. We previously showed that DSCR-1 functions in a negative feedback loop to attenuate calcineurin signaling. Upregulation of the calcineurin pathway via loss of Dscr-1 leads to a significant increase in lung metastasis due to the increased expression of a newly identified NFAT target, Angiopoietin (Ang)-2. An increase in VEGF levels specifically in the lung versus other organ microenvironments triggers a threshold of calcineurin-NFAT signaling that transactivates Ang2 in lung endothelium. Further, we demonstrate that overexpression of DSCR-1 or the Ang-2 receptor, soluble Tie2, prevents activation of the lung endothelium inhibiting lung metastases in our mouse models. Our studies provide insights into mechanisms underlying angiogenesis in the pre-metastatic niche and offers novel targets for lung metastases.

Publication Title

The calcineurin-NFAT-angiopoietin-2 signaling axis in lung endothelium is critical for the establishment of lung metastases.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE155271
Expression data from human skeletal muscle in endurance-trained athletes
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Endurance-trained athletes have high oxidative capacity, enhanced insulin sensitivity, and high intracellular lipid accumulation in muscle. These characteristics are likely due to altered gene expression levels in muscle.

Publication Title

Endurance Runners with Intramyocellular Lipid Accumulation and High Insulin Sensitivity Have Enhanced Expression of Genes Related to Lipid Metabolism in Muscle.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact