refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE137634
Lymphocyte DNA methylation mediates genetic risk at shared immune mediated disease loci
  • organism-icon Homo sapiens
  • sample-icon 209 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE142049
Transcriptional data of inflamatory arthritis B cells
  • organism-icon Homo sapiens
  • sample-icon 109 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

With a focus on rheumatoid arthritis (RA), we sought new insight into genetic mechanisms of adaptive immune dysregulation to help prioritise molecular pathways for targeting in this and related immune pathologies. Whole genome methylation and transcriptional data from isolated CD4+ T cells and B cells of >100 genotyped and phenotyped inflammatory arthritis patients, all of whom were naïve to immunomodulatory treatments, were obtained. Analysis integrated these comprehensive data with GWAS findings across IMDs and other publically available resources.

Publication Title

Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE141934
Transcriptional data of inflamatory arthritis T cells.
  • organism-icon Homo sapiens
  • sample-icon 100 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

With a focus on rheumatoid arthritis (RA), we sought new insight into genetic mechanisms of adaptive immune dysregulation to help prioritise molecular pathways for targeting in this and related immune pathologies. Whole genome methylation and transcriptional data from isolated CD4+ T cells and B cells of >100 genotyped and phenotyped inflammatory arthritis patients, all of whom were naïve to immunomodulatory treatments, were obtained. Analysis integrated these comprehensive data with GWAS findings across IMDs and other publically available resources.

Publication Title

Lymphocyte DNA methylation mediates genetic risk at shared immune-mediated disease loci.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE5766
Expression Profiling of Retinal Detachment and Accelerated Re-attachment
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Retinal detachment is a major cause of blindness due to penetrating trauma and ocular inflammation, and is often observed in many patients following cataract extraction surgery. When the retinal photoreceptors detach from their epithelium, stress signals and apoptotic pathways are initiated that will lead to loss of vision, however accelerating the reattachment of these cells can prevent photoreceptor death and subsequent vision loss. To determine the genes involved in this process, we performed a microarray screen using a mouse model or retinal detachment in conjunction with a P2Y2 agonist previously demonstrated to hasten retinal reattachment.

Publication Title

Expression profiling after retinal detachment and reattachment: a possible role for aquaporin-0.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7852
Fat Treg cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Comparisons of global gene-expression profiles revealed a greater distinction between CD4+ Treg cells and CD4+ conventional (Tconv) T cells residing in abdominal (epidydimal) fat versus in more standard locations such as the spleen, thymus and LN.

Publication Title

Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49029
Transcriptome partitioning for mRNA translation in hypoxia
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Protein synthesis belongs to the most energy consuming processes in the cell. Lowering oxygen tension below normal (hypoxia) causes a rapid inhibition of global mRNA translation due to the decreased availability of energy. Interestingly, subsets of mRNAs pursue active translation under such circumstances. In human fibrosarcoma cells (HT1080) exposed to prolonged hypoxia (36 h, 1% oxygen) we observed that transcripts are either increasingly or decreasingly associated with ribosomes localized at the endoplasmic reticulum (ER). In a global setting it turned out that only 31% of transcripts showing elevated total-RNA levels were also increasingly present at the ER in hypoxia. These genes, regulated by its expression as well as its ER-localization, belong to the gene ontologys hypoxia response, glycolysis and HIF-1 transcription factor network supporting the view of active mRNA translation at the ER during hypoxia. Interestingly, a large group of RNAs was found to be unchanged at the expression level, but translocate to the ER in hypoxia. Among these are transcripts encoding translation factors and >180 ncRNAs. In summary, we provide evidence that protein synthesis is favoured at the ER and, thus, partitioning of the transcriptome between cytoplasmic and ER associated ribosomes mediates adaptation of gene expression in hypoxia.

Publication Title

Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum.

Sample Metadata Fields

Specimen part, Cell line

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact