refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 32 results
Sort by

Filters

Technology

Platform

accession-icon SRP113763
RNAseq of CD45+ cells excluding mast cells from the skin of K14HPV16 Mcpt5-Cre- and K14HPV16 Mcpt5-Cre+ mice
  • organism-icon Mus musculus
  • sample-icon 101 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The experiment aimed at determing the influence of mast cell deficiency on the transcriptome of skin-infiltrating leukocytes in K14HPV16 mice at 2month and 6month of age. Overall design: Skin-inflitrating leucocytes were FACS-purified from mast cell proficient (Mcpt5-Cre-) and mast cell deficient (Mcpt5-Cre+) K14HPV16 mice. Mast cells (CD117 high, FCeR1 high) were excluded from the sorting gate. In order to control for minimal mast cell contamination during sorting from K14HPV16 Mcpt5-Cre- skin, mast cell signature transcripts were identified by comparing transcriptomes of samples fromK14HPV16 Mcpt5-Cre- mice in which mast cells were flow cytometrically included vs excluded.

Publication Title

Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP113762
RNAseq of MB49 inoculated tumor-assotiated macrophages from MC-proficient and MC-deficient animals
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA seq was used to compare the expression profile of macrophages in presence and absense of mast cells. MB49 cells were injected i.d. into Mcpt5-Cre+ R26DTA animals and cre-negative littermates. Macrophages were sorted at 20 d.p.i. Overall design: Macrophage RNA profiles of MB49 TAMs (tumor-associated macrophages), harvested at 20 d.p.i. in MC-Proficient and MC-deficient animals

Publication Title

Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP212738
The Toll signaling pathway targets the insulin-like peptide Dilp6 to inhibit growth in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

To identify genes that mediate altered communication between fat body and peripheral tissues, we report the gene expression changes in Drosophila third instar larval fat bodies with or without constitutively-active Toll (Toll10b) to activate innate immune signaling, myristoylated Akt (myrAkt) to activate insulin signaling, or both transgenes to bypass the block from Toll signaling to the upstream part of the insulin signaling pathway Overall design: Comparison of RFP/GFP (Control), Toll10b/GFP (Toll10b), RFP/myrAkt (myrAkt), and Toll10b/myrAkt (Toll10b + myrAkt)

Publication Title

The Toll Signaling Pathway Targets the Insulin-like Peptide Dilp6 to Inhibit Growth in Drosophila.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE54775
Effect of choline kinase inhibitor hexadecyltrimethylammonium bromide on Plasmodium falciparum gene expression
  • organism-icon Plasmodium falciparum
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

Investigations on the fundamental of malaria parasite biology, such as invasion, growth cycle, metabolism and cell signalling have uncovered a number of potential antimalarial drug targets, including choline kinase, a key enzyme involved in the synthesis of phosphatidylcholine, an important component in parasite membrane compartment.

Publication Title

Effect of choline kinase inhibitor hexadecyltrimethylammonium bromide on Plasmodium falciparum gene expression.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP109169
Thiol-linked alkylation for the metabolic sequencing of RNA [SLAM-seq pulse/chase labeling in wildtype mES cells]
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype mouse embryonic stem cells (mES cells) were subjected to s4U metabolic RNA labeling for 24 h (pulse, 100 µM s4U), followed by washout (chase) using non-thiol-containing uridine. Total RNA was prepared at various time points along the chase (0h, 0.5h, 1h, 3h, 6h, 12h, and 24h). Total RNA was then subjected to alkylation and mRNA 3' end sequencing library preparation (QuantSeq, Lexogen).

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP109094
Thiol-linked alkylation for the metabolic sequencing of RNA [Transcriptional inhibition by Actinomycin D]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: 5 µg/ml Actinomycin D was added to wildtype mouse embryonic stem (mES) cells and total RNA was prepared at various time points after addition of Actinomycin D (0h, 0.25h, 0.5h, 1h, 3h and 10h). Total RNA was subjected to mRNA 3' end library preparation (QuantSeq, Lexogen) and high througput sequencing.

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP109172
Thiol-linked alkylation for the metabolic sequencing of RNA [SLAM-seq in wildtype and Xpo5 knockout mES cells]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype (wt) mouse embryonic stem (mES) cells, clonal mES cells that had been transfected with non-targeting control guide RNAs (ctr), or Exportin-5 depleted (Xpo5KO) mES cells were subjected to 3h and 12h s4U-pulse labeling followed by total RNA extraction, alkylation, mRNA 3' end library preparation (QuantSeq, Lexogen) and high throughput sequencing.

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP109093
Thiol-linked alkylation for the metabolic sequencing of RNA [SLAM-seq in wildtype and Mettl3 knockout mES cells]
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Wildtype (wt) mouse embryonic stem (mES) cells, clonal mES cells that had been transfected with non-targeting control guide RNAs (ctr), or Mettl3 depleted (Mettl3KO) mES cells were subjected to 3h and 12h s4U-pulse labeling followed by total RNA extraction, alkylation, mRNA 3´ end library preparation (QuantSeq, Lexogen) and high throughput sequencing.

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP109171
Thiol-linked alkylation for the metabolic sequencing of RNA [Transcriptional output measurement by SLAM-seq in wildtype mES cells]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Mouse embryonic stem (mES) cells were subjected to 45 min s4U-pulse labeling followed by total RNA extraction, alkylation, mRNA 3' end library preparation (Quant-seq, Lexogen) and high throughput sequencing.

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP109095
Thiol-linked alkylation for the metabolic sequencing of RNA [SLAM-seq of wildtype mES cell RNA +/- iodoacetamide treatment]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady-state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), an orthogonal chemistry-based epitranscriptomics-sequencing technology that uncovers 4-thiouridine (s4U)-incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM-seq enables rapid access to RNA polymerase II-dependent gene expression dynamics in the context of total RNA. When applied to mouse embryonic stem cells, SLAM-seq provides global and transcript-specific insights into pluripotency-associated gene expression. We validated the method by showing that the RNA-polymerase II-dependent transcriptional output scales with Oct4/Sox2/Nanog-defined enhancer activity; and provides quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N6-methyladenosine. SLAM-seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective, and scalable manner. Overall design: Total RNA from wildtype mouse embryonic stem (mES cells) was extracted and subjected to alkylation or mock treatment prior to mRNA 3' end library preparation (QuantSeq, Lexogen) and high throughput sequencing.

Publication Title

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact