refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 356 results
Sort by

Filters

Technology

Platform

accession-icon GSE33892
Comparison of TEX and M9-ENL1 cell lines to HL60 and THP1 cell lines
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Gene regulatory networks that govern hematopoietic stem cells (HSC) and leukemiainitiating cells (L-IC) are deeply entangled. Thus, the discovery of compounds that target L-IC while sparing HSC is an attractive but difficult endeavor. Presently, most drug discovery approaches fail to counter-screen compounds against normal hematopoietic stem/progenitor cells (HSPC) to assess therapeutic index. Here, we present a combined in vitro and in vivo strategy to identify compounds specific to L-IC in acute myeloid leukemia (AML). A high-throughput screen of 4000 compounds on novel leukemia cell lines derived from human experimental leukemogenesis models yielded 80 hits, of which most were toxic to normal HSPC. Of the 10 compounds that passed this initial filter, we chose to characterize a single compound, kinetic riboside (KR), on AML L-IC and HSPC. KR demonstrated comparable efficacy to standard therapies against 63 primary AMLs. In vitro, KR effectively targeted the L-IC-enriched CD34+CD38- AML fraction, while sparing normal HSPC enriched fractions, although these effects were mitigated on HSC assayed in vivo, and highlights the importance of in vivo L-IC and HSC assays to measure function. Overall, we provide a novel approach to screen large drug libraries for the discovery of anti-L-IC compounds for human leukemias.

Publication Title

A small molecule screening strategy with validation on human leukemia stem cells uncovers the therapeutic efficacy of kinetin riboside.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE56345
Therapeutic potential of spleen tyrosine kinase inhibition for treatment of high-risk precursor B-cell acute lymphoblastic leukemia
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This study revealed pathogenic role of pre-BCR-independent SYK activation in high-risk B-ALL.

Publication Title

Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45452
BCR-ABL1 and a dominant negative isoform of Ikaros cooperate to induce human acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of lineage depleted human cord blood cells sequentially transduced with retro- (BCR-ABL1) and lentiviral (Ik6) vectors and the corresponding controls. Results provide important informations on the collaboration of BCR-ABL1 and Ik6 in human hematopoietic cells.

Publication Title

Dominant-negative Ikaros cooperates with BCR-ABL1 to induce human acute myeloid leukemia in xenografts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33243
Human acute myelogenous leukemia-initiating cells treated with fenretinide
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional profiling of human acute myelogenous leukemia (AML) CD34+ cells treated with 5 M fenretinide. Two timepoints included are 6h, 12h, covering the apoptosis-induction time window of AML CD34+ cells responsing to the fenretinide treatment. We studied gene expression series in human AML CD34+ cells with or without 5 M fenretinide treatment by cDNA microarray analysis. Several signal transduction pathways are involve, including stress response, NF-kappaB inhibition and p53 inhibition (p<0.05). These findings indicate fenretinide may represent a promising candidate for targeting AML-initiating cells.

Publication Title

Preferential eradication of acute myelogenous leukemia stem cells by fenretinide.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP163419
Transcriptomic Profile of OCI-AML-20 Cell Line
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Acute myeloid leukemia (AML) is a complex, heterogeneous disease with variable outcomes following curative intent chemotherapy. AML with inv(3) is a genetic subgroup characterized by low response rate to induction type chemotherapy and hence is among the worst long term survivorship of the AMLs. Here, we present RNA-Seq transcriptome data from OCI-AML-20, a new AML cell line with inv(3) and deletion of chromosome 7. Overall design: RNA-Seq transcriptome analysis of OCI-AML-20 cell line with three biological replicates.

Publication Title

Characterization of inv(3) cell line OCI-AML-20 with stroma-dependent CD34 expression.

Sample Metadata Fields

Disease, Cell line, Subject

View Samples
accession-icon GSE19203
PML-RARa binding sites and their correlation with the gene expression in ATRA treated NB4 cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PML-RARa contributes to the development of APL through repression of genes important in myeloid development. Through a global approach, we have identified 2,979 high quality PML-RARa binding sites in ZnSO4 induced PR9 cells. By integration the gene expression data, we found that PML/RARa target genes are transcriptionally suppressed in primary APL cells and re-activated in ATRA treated NB4 cells.

Publication Title

PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE19201
Expression profiling of ATRA treated NB4 cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

NB4 is an APL derived cell line, carrying the t(15;17) translocation and expressing the PML/RARa fusion protein. Still, an important question that remains to be addressed is whether PML/RARa target genes are transcriptionally suppressed in primary APL cells and re-activated in all-trans retinoic acid (ATRA) treated NB4 cells. Gene expression of NB4 cells treated with ATRA at different time points were analyzed.

Publication Title

PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP028528
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome sequencing of Chronic Phase and Blast Crisis CML, normal cord blood cells, and normal cord blood cells transduced with lentiviral vectors

Publication Title

ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52279
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP033279
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cancer types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 megabases downstream of Myc that are occupied by SWI/SNF, as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in 3% of acute myeloid leukemia. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs Overall design: To profile the basal transcription level, we performed NSR and PolyA+ (illumine TruSeq) in a murine AML RN2 cell lines. To define the rapid downregulated genes in response to JQ1, BET bromodomian inhibitor, in RN2 cell, we performed RNA-seq in RN2 exposing to 250nM JQ1 for 48h time course.

Publication Title

Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact