refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-1743
Transcription profiling by array of Arabidopsis EXORDIUM mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Wild-type and exo mutant (SALK_098602) were grown in parallel in three independent experiments in a greenhouse. 3 x 2 profiles were established.

Publication Title

The extracellular EXO protein mediates cell expansion in Arabidopsis leaves.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon SRP214490
RNA-seq of P. aeruginosa clinical isolate collection under biofilm growth conditions
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 167 Downloadable Samples
  • Technology Badge IconIllumina NovaSeq 6000, Illumina HiSeq 2500

Description

Purpose : The goal of this study was to use RNA-seq to compare transcriptional profiles under biofilm conditions with planktonic growth and explore the correlation of gene expression of a collection of clinical P. aeruginosa isolates to various phenotypes, such as biofilm structure or virulence. Methods : mRNA profiles were generated for Pseudomonas aeruginosa clinical samples derived from various geographical locations by deep sequencing. The removal of ribosomal RNA was performed using the Ribo-Zero Bacteria Kit (Illumina) and cDNA libraries were generated with the ScriptSeq v2 Kit (Illumina). The samples were sequenced in single end mode on an Illumina HiSeq 2500 device or paired end mode on an Illumina Novaseq 6000. mRNA reads were trimmed and mapped to the NC_008463.1 (PA14) reference genome from NCBI using bowtie2 with default settings. Overall design: mRNA profiles from Pseudomonas aeruginosa derived from static biofilm cultures grown for 12h to 48h in 96-well microtiter plates or planktonic LB cultures grown to an OD600 = 2 and deep sequenced using Illumina HiSeq 2500/NovaSeq 6000.

Publication Title

Parallel evolutionary paths to produce more than one <i>Pseudomonas aeruginosa</i> biofilm phenotype.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE7182
Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The Philadelphia chromosome (Ph) encoding the oncogenic BCR-ABL1 kinase defines a subset of ALL with a particularly unfavorable prognosis. Acute lymphoblastic leukemia (ALL) cells are derived from B cell precursors in most cases and typically carry rearranged immunglobulin heavy chain (IGH) variable (V) region genes devoid of somatic mutations. Somatic hypermutation is restricted to mature germinal center B cells and depends on activation-induced cytidine deaminase (AID). Studying AID expression in 108 cases of ALL, we detected AID mRNA in 24 of 28 Ph-positive ALLs as compared to 6 of 80 Ph-negative ALLs. Forced expression of BCR-ABL1 in Ph-negative ALL cells and inhibition of the BCR-ABL1-kinase showed that aberrant expression of AID depends on BCR-ABL1 kinase activity. Consistent with aberrant AID expression in Ph-positive ALL, IGH V region genes and BCL6 were mutated in many Ph-positive but unmutated in most Ph-negative cases. In addition, AID introduced DNA-single-strand breaks within the tumor suppressor gene CDKN2B in Ph-positive ALL cells, which was sensitive to BCR-ABL1 kinase inhibition and silencing of AID expression by RNA interference. These findings identify AID as a BCR-ABL1-induced mutator in Ph-positive ALL cells, which may be relevant with respect to the particularly unfavorable prognosis of this leukemia subset.

Publication Title

Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16712
Gene Expression Profiles of Germinal Center B Cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We report the gene expression profiles of germinal center B cells obtained by FACS analyses of normal human lymph nodes.

Publication Title

Identification and functional relevance of de novo DNA methylation in cancerous B-cell populations.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE197751
Cigarette smoke extract disturbs mitochondria-regulated airway epithelial cell responses to pneumococci
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Chronic obstructive pulmonary disease (COPD) is a heterogenous respiratory disease mainly caused by smoking. Respiratory infections constitute a major risk factor for acute worsening of COPD symptoms or COPD exacerbation. Mitochondrial functionality, which is crucial for the execution of physiologic functions of metabolically active cells, is impaired in airway epithelial cells (AECs) of COPD patients as well as smokers. However, the potential contribution of mitochondrial dysfunction in AECs to progression of COPD, infection-triggered exacerbations in AECs and a potential mechanistic link between mitochondrial and epithelial barrier dysfunction is unknown to date. In this study, we used an in vitro COPD exacerbation model based on AECs exposed to cigarette smoke extract (CSE) followed by infection with Streptococcus pneumoniae (Sp). The levels of oxidative stress, as an indicator of mitochondrial stress were quantified upon CSE and Sp. The expression of proteins associated with mitophagy, mitochondrial content and biogenesis as well as mitochondrial fission and fusion was quantified upon CSE and Sp. Transcriptional AEC profiling was performed to identify the potential changes in innate immune pathways and correlate them with mitochondrial function. We found that CSE exposure substantially altered mitochondrial function in AECs by suppressing mitochondrial complex protein levels, reducing mitochondrial membrane potential and increasing mitochondrial stress and mitophagy. Moreover, CSE-induced mitochondrial dysfunction correlated with reduced enrichment of genes involved in apical junctions and innate immune responses to Sp, particularly type I interferon responses. Together, our results demonstrated that CSE-induced mitochondrial dysfunction may contribute to impaired innate immune responses to Sp and may thus trigger COPD exacerbation.

Publication Title

Cigarette Smoke Extract Disturbs Mitochondria-Regulated Airway Epithelial Cell Responses to Pneumococci.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE30883
Role and function of Bach2 in BCR-ABL1 driven pre-B ALL
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to investigate the function of Bach2 in pre-B ALL, we isolated bone marrow cells from wildtype and Bach2 knockout mice of C57Bl6 background and transformed them with BCR-ABL1.

Publication Title

Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE53685
A mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP034745
A mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia [HTS]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The plasma cell transcription factor XBP1 is critical for terminal differentiation of B cells into plasma cells but has no known role at earlier stages of B-cell development. Here we show that XBP1 is not only important during early B-cell development and for survival of pre-B cells but also protects pre-B ALL cells. Among pre-B ALL subset, XBP1 was hypomethylated and highest expressed in the Ph+ ALL subset. Cre-mediated deletion of XBP1 in a mouse model of Ph+ ALL compromised proliferation and viability and prolonged survival of leukemia-bearing mice. Interestingly, XBP1 expression levels were positively transcriptionally regulated by STAT5 and negatively by BACH2 and BCL6. High XBP1 expression in high risk ALL patients at the time of diagnosis predicted poor outcome in two clinical trials. Clinically, small-molecule inhibition of IRE1-dependent XBP1-activation caused cell death of patient-derived pre-B ALL cells and affected leukemia-initiation in transplant recipient mice. Collectively, these studies identify XBP1 as an important survival factor and as a potential therapeutic target to overcome drug-resistance in pre-B ALL. Overall design: Genome-wide profiling of mRNA levels in p210 transduced murine Xbp1 fl/+ pre-B cells with ERT2 (XE.1,2,3) and Cre- ERT2  (XC.1,2,3).

Publication Title

Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53684
A mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia [array]
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The plasma cell transcription factor XBP1 is critical for terminal differentiation of B cells into plasma cells but has no known role at earlier stages of B-cell development. Here we show that XBP1 is not only important during early B-cell development and for survival of pre-B cells but also protects pre-B ALL cells. Among pre-B ALL subset, XBP1 was hypomethylated and highest expressed in the Ph+ ALL subset. Cre-mediated deletion of XBP1 in a mouse model of Ph+ ALL compromised proliferation and viability and prolonged survival of leukemia-bearing mice. Interestingly, XBP1 expression levels were positively transcriptionally regulated by STAT5 and negatively by BACH2 and BCL6. High XBP1 expression in high risk ALL patients at the time of diagnosis predicted poor outcome in two clinical trials. Clinically, small-molecule inhibition of IRE1-dependent XBP1-activation caused cell death of patient-derived pre-B ALL cells and affected leukemia-initiation in transplant recipient mice. Collectively, these studies identify XBP1 as an important survival factor and as a potential therapeutic target to overcome drug-resistance in pre-B ALL.

Publication Title

Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE24814
Role and function of STAT5 in BCR-ABL1 driven pre-B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to investigate the function of STAT5 in ALL, we isolated bone marrow cells from STAT5 fl/fl mice and transformed them with BCR-ABL1. In a second transduction the BCR-ABL1 driven pre-B cells were transformed either with CRE-GFP or empty vector control (GFP) and subjected to gene expression analysis.

Publication Title

BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia.

Sample Metadata Fields

Age, Disease, Disease stage

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact