refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 226 results
Sort by

Filters

Technology

Platform

accession-icon GSE60179
Role of Ror2 in primordial germ cell migration
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Primordial germ cells (PGCs), the embryonic precursors of eggs and sperm, are a unique model for identifying and studying regulatory mechanisms in singly migrating cells. From their time of specification to eventual colonization of the gonad, mouse PGCs traverse through and interact with many different cell types, including epithelial cells and mesenchymal tissues. Work in drosophila and zebrafish have identified many genes and signaling pathways involved in PGC migration, but little is known about this process in mammals.

Publication Title

Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049593
7q11.23 dosage-dependent dysregulation in the human pluripotent state primes aberrant transcriptional programs in disease-relevant lineages (RNAseq)
  • organism-icon Homo sapiens
  • sample-icon 406 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We apply the cellular reprogramming experimental paradigm to two disorders caused by symmetrical copy number variations (CNV) of 7q11.23 and displaying a striking combination of shared as well as symmetrically opposite phenotypes: Williams Beuren syndrome (WBS) and 7q microduplication syndrome (7dupASD). Through a uniquely large and informative cohort of transgene-free patient-derived induced pluripotent stem cells (iPSC), along with their differentiated derivatives, we find that 7q11.23 CNV disrupt transcriptional circuits in disease-relevant pathways already at the pluripotent state. These alterations are then selectively amplified upon differentiation into disease-relevant lineages, thereby establishing the value of large iPSC cohorts in the elucidation of disease-relevant developmental pathways. In addition, we functionally define the quota of transcriptional dysregulation specifically caused by dosage imbalances in GTF2I (also known as TFII-I), a transcription factor in 7q11.23 thought to play a critical role in the two conditions, which we found associated to key repressive chromatin modifiers. Finally, we created an open-access web-based platform (accessible at http://bio.ieo.eu/wbs/ ) to make accessible our multi-layered datasets and integrate contributions by the entire community working on the molecular dissection of the 7q11.23 syndromes. Overall design: We reprogrammed skin fibroblasts from patients harbouring a 7q11.23 hemi-deletion (WBS, 4 patients; +1 atypical deletion, AtWBS) or microduplication (7dupASD; 2 patients), as well as from one unaffected relative and two unrelated controls, using integration-free mRNA-reprogramming, leading to the establishment of a total of 27 characterized iPSC clones. We profiled these by RNAseq (either polyA or ribo-zero). To isolate the contribution of GTF2I to the transcriptional dysregulation, we created stable lines expressing a short hairpin against GTF2I from a representative subset of these iPSC clones, and profiled by RNAseq 7 such lines along with their respective scramble controls. Finally, we also profiled by RNAseq mesenchymal stem cells (MSC) derived from a representative subset of the lines.

Publication Title

RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27931
An RNAi Screen Identifies TRRAP as a Regulator of Brain Tumor-Initiating Cell Differentiation
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Glioblastoma multiforme is the most common and most aggressive type of primary brain tumor. The brain-infiltrative character of glioblastoma makes complete surgical removal of the tumor impossible and neither radiation nor current chemotherapy provide cure. Recent evidence shows that glioblastoma multiforme consists of heterogeneous cell populations which differ in tumor-forming potential. Enriched tumor-initiating capacity has been linked to poorly differentiated glioblastoma cells sharing features with neural stem cells. Thus, these cells are important targets for new therapeutic strategies.

Publication Title

An RNAi screen identifies TRRAP as a regulator of brain tumor-initiating cell differentiation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE16590
Ascorbate effect on serum free cultured hESC
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanWG-6 v3.0 expression beadchip

Description

Ascorbate activates CD30 expression and causes widespread specific demethylation of the epigenome of serum free cultured hESC.

Publication Title

Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE23668
A small molecule accelerates neuronal differentiation in the adult rat
  • organism-icon Rattus norvegicus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Adult neurogenesis occurs in mammals and provides a mechanism for continuous neural plasticity in the brain.However, little is known about the molecular mechanisms regulating hippocampal neural progenitor cells (NPCs) and whether their fate can be pharmacologically modulated to improve neural plasticity and regeneration. Here, we report the characterization of a unique small molecule (KHS101) that selectively induces a neuronal differentiation phenotype. Mechanism of action studies revealed a link of KHS101 to cell cycle exit and specific binding to the TACC3 protein, whose knockdown in NPCs recapitulates the KHS101-induced phenotype. Upon systemic administration, KHS101 distributed to the brainandresulted in a significant increase in neuronal differentiation in vivo. Our findings indicate that KHS101 accelerates neuronal differentiation by interaction with TACC3 and may provide a basis for pharmacological intervention.directed at endogenous NPCs.

Publication Title

A small molecule accelerates neuronal differentiation in the adult rat.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP067737
Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Malignant gliomas constitute one of the most significant areas of unmet medical need, due to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We found that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated to invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a crtitical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signaling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signaling. Overall design: Transcriptomic analysis of two different stages of gliomagenesis

Publication Title

Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE38571
Integrated transcriptomic and epigenomic analysis of primary human lung cell differentiation
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE38570
Integrated transcriptomic and epigenomic analysis of primary human lung cell differentiation (Rat)
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Analysis of gene expression during differentiation of alveolar epithelial type 2 (AT2) cells into AT1 cells. Timepoints taken at Day 0 (AT2 cell), Days 2, 4, and 6 in culture (differentiating) and Day 8 in culture (AT1-like cells).

Publication Title

Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE46403
Vitamin C induces Tet-dependent DNA demethylation in ES cells to promote a blastocyst-like methylome
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE46319
Vitamin C induces Tet-dependent DNA demethylation in ES cells to promote a blastocyst-like methylome [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germline and may be mediated by Tet (ten-eleven-translocation) enzymes, which convert 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC). Tet enzymes have been extensively studied in mouse embryonic stem (ES) cells, which are generally cultured in the absence of Vitamin C, a potential co-factor for Fe(II) 2-oxoglutarate dioxygenase enzymes like Tets. Here we report that addition of Vitamin C to ES cells promotes Tet activity leading to a rapid and global increase in hmC. This is followed by DNA demethylation of numerous gene promoters and up-regulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site (TSS) of genes affected by Vitamin C treatment. Importantly, Vitamin C, but not other antioxidants, enhances the activity of recombinant human Tet1 in a biochemical assay and the Vitamin C-induced changes in hmC and mC are entirely suppressed in Tet1/2 double knockout (Tet DKO) ES cells. Vitamin C has the strongest effects on regions that gain methylation in cultured ES cells compared to blastocysts and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A-particle (IAP) elements, which are resistant to demethylation in the early embryo, are resistant to Vitamin C-induced DNA demethylation. Collectively, this study establishes that Vitamin C is a direct regulator of Tet activity and DNA methylation fidelity in ES cells.

Publication Title

Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact