refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 173 results
Sort by

Filters

Technology

Platform

accession-icon GSE29426
Effect of FGF15 or FGF19 on mouse liver
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Mouse FGF15 and human FGF19 are orthologous proteins that regulate bile acid metabolism. However, other hepatic functions of FGF15/19 are not well characterized.

Publication Title

FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40821
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Decreased bile secretion in rodents by either ligation of the common bile duct or induction of cirrhosis causes changes in the small intestine, including bacterial overgrowth and translocation across the mucosal barrier. Oral administration of bile acids inhibits these effects. The genes regulated by FXR in ileum suggested that it might contribute to the enteroprotective actions of bile acids. To test this hypothesis, mice were administered either GW4064 or vehicle for 2 days and then subjected to bile duct ligation (BDL) or sham operation. After 5 days, during which GW4064 or vehicle treatment was continued, the mice were killed and their intestines were analyzed for FXR target gene expression.

Publication Title

Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE39507
Microarray analysis of FXR-regulated genes in murine small intestine.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. In this report we have examined the role of FXR in the ileum. We demonstrate that it plays a crucial role in preventing bacterial overgrowth and maintaining the integrity of the intestinal epithelium

Publication Title

Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.

Sample Metadata Fields

Sex, Compound

View Samples
accession-icon GSE42331
Gene expression data from whole blood of Klinefelter Syndrome patients compared to male and female controls
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Patients with Klinefelter Syndrome have the karyotype 47,XXY. These men are suffering from hypergonadotropic hypogonadism and are infertile. It is debated whether the different hormonal constitution observed in these patients or different gene expression

Publication Title

Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE8607
Gene expression profiling of testicular seminoma
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95 Version 2 Array (hgu95av2)

Description

Gene expression patterns of testicular seminoma were analysed applying oligonucleotide microarrays in 40 specimens of different tumour stages (pT1, pT2, pT3) and in 3 normal testes.

Publication Title

Gene signatures of testicular seminoma with emphasis on expression of ets variant gene 4.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17772
Human adult germline stem cells in question
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Conrad et al. Nature 456, 344349 (2008) have generated human adult germline stem cells (haGSCs) from human testicular tissue, which they claim have similar pluripotent properties to human embryonic stem cells (hESCs). Here we investigate the pluripotency of haGSCs by using global gene-expression analysis based on their gene array data and comparing the expression of pluripotency marker genes in haGSCs and hESCs, and in haGSCs and human fibroblast samples derived from different laboratories, including our own. We find that haGSCs and fibroblasts have a similar gene-expression profile, but that haGSCs and hESCs do not. The pluripotency of Conrad and colleagues haGSCs is therefore called into question.

Publication Title

Human adult germline stem cells in question.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86643
Comparison of infloresence transcriptome of bp er vs. bp er fil
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

BP and ER encode proteins that act synergistically to regulate Arabidopsis inflorescence architecture. To search for genes/proteins that influence the BP/ER signaling pathways, we conducted mutagenesis of the bp er double mutant and found that a mutation in FILAMENTOUS FLOWER (FIL) suppresses many of the morphological/developmental defects in bp er. Given that FIL encodes a Zn-finger containing transcription factor, microarray analysis was conducted on bp er vs. the bp er fil line to identify genes that are misregulated and which might implicate specific genes/proteins/pathways that are involved in regulating inflorescence development.

Publication Title

A novel Filamentous Flower mutant suppresses brevipedicellus developmental defects and modulates glucosinolate and auxin levels.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4035
Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression (palme-affy-mouse-84746)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

These data are from the brains (amygdala and hippocampus) of mice originally derived from a cross between C57BL/6J and DBA/2J inbred strains. We used short-term selection to produce outbred mouse lines with differences in contextual fear conditioning, which is a measure of fear learning. We selected for a total of 4 generations. Fear learning differed in the selected lines and this difference was stronger with each successive generation of selection. These mice also showed differences for measures of anxiety-like behavior, but were not different for tests of non-fear motivated learning, suggesting that selection altered alleles that are specifically involved in emotional behaviors. We identified several QTLs for the selection response. We used Affymetrix microarrays to identify differentially expressed genes in the amygdala and hippocampus of mice from the final generation of selection. Amygdala and hippocampus samples were rapidly dissected out of experimentally nave mice f rom each selected line. Three samples were pooled and hybridized to each array. Experimentally nave mice were used because the behavior of the mice can be reliably anticipated due to their lineage. Thus, these gene expression differences are not due to the response to human handling, foot shock or fear-inducing conditioned stimuli. We have a second similar study that focuses on a different selected population that was based on C57BL/6J and A/J mice (see GES4034).

Publication Title

Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MTAB-375
Transcription profiling by array of Arabidopsis after exposure to different temperatures and light levels
  • organism-icon Arabidopsis thaliana
  • sample-icon 175 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to temperature and light

Publication Title

High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE53353
A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Expression data from CD34+ hematopoietic cells transduced with control or anti-SLPI shRNA, serum starved and treated with G-CSF.

Publication Title

A lack of secretory leukocyte protease inhibitor (SLPI) causes defects in granulocytic differentiation.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact