refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 500 results
Sort by

Filters

Technology

Platform

accession-icon GSE43319
Gadd45a and Ing1 interaction in epigenetic gene regulation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE43317
Gene expression changes in HEK293T cells upon overexpression of ING1b and GADD45a
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseWG-6 v2.0 expression beadchip

Description

ING1b and GADD45a are nuclear proteins involved in the regulation of cell growth, apoptosis and DNA repair. We found that ING1b and GADD45a physically and functionally interact in the epigenetic regulation of specific target genes. In order to characterise the functional ING1b-GADD45a interaction, we performed a gain-of-function experiment in HEK293T cells by individual and combinatorial plasmid transfections and then analysed the transcriptional response via expression microarray profiling.

Publication Title

Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE43318
Gene expression changes in mouse embryonic fibroblasts (MEF cells) deficient for Ing1 and Gadd45a
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

ING1b and GADD45a are nuclear proteins involved in the regulation of cell growth, apoptosis and DNA repair. We found that ING1b and GADD45a physically and functionally interact in the epigenetic regulation of specific target genes. In order to study this interaction further, we analysed the transcriptional changes in MEF cells from single and double Ing1/Gadd45 knockout mice via microarray profiling.

Publication Title

Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP078499
Role of GADD45 proteins in embryonic stem cells and their derivatives
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We generated Gadd45a,b,g triple-knockout mouse embryonic stem cells and performed RNA-seq expression profiling under six different conditions of cell culture and in vitro differentiation. Overall design: Gadd45a,b,g triple knockout (TKO) mouse embryonic stem cells (mESC) were generated by CRISPR/Cas9. RNA-Seq was performed to compare the transcriptome in three independent Gadd45 TKO versus three independent control mESC lines under different conditions: (i) Serum cultured mESC, (ii) Vitamin C treated mESC, (iii) 2i treated mESC, (iv) mESC differentiated as embryoid bodies (EB), (v) mESC differentiated as a serum-free monolayer, and (vi) EB stimulated with retinoic acid (RA).

Publication Title

GADD45 promotes locus-specific DNA demethylation and 2C cycling in embryonic stem cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP149486
Gene expression changes in Ing1- and Gadd45a- single- or double-knockout mouse embryonic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

ING1b and GADD45a are nuclear proteins involved in the regulation of cell growth, apoptosis and DNA repair. We previously found that ING1b is required to target GADD45a-mediated active DNA-demethylation via TET1 to specific loci. In order to study the impact of ING1-GADD45a on gene expression, we compared the expression profile of wildtype mouse embryonic fibroblasts (MEFs) with Ing1- and Gadd45a- single- or double-knockout (DKO) MEFs. Overall design: Gene expression profiling in all 4 genotypes of undifferentiated MEFs in triplicates.

Publication Title

Impaired DNA demethylation of C/EBP sites causes premature aging.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE16983
Expression data from placenta harvested from WT and Pth-null fetuses treated 90 minutes prior with saline or PTH (1-84)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Parathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis is uncertain. To address this we treated Pth-null mice in utero with 1 nmol PTH (1-84) or saline and examined placental calcium transfer 90 minutes later. It was found that placental calcium transfer increased in Pth-null fetuses treated with PTH as compared to Pth-null fetuses treated with saline. Subsequently, to determine the effect of PTH treatment on placental gene expression, in a separate experiment, 90 minutes after the fetal injections the placentas were removed for subsequent RNA extraction and microarray analysis.

Publication Title

Parathyroid hormone regulates fetal-placental mineral homeostasis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP075685
Genome-wide maps of histone variant H3.3 occupancy in zebrafish cardiomyocytes [RNA]
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq4000

Description

We report high-throughput profiling of gene expression from whole zebrafish ventricles. We profile mRNA in uninjured ventricles and those undergoing regeneration 14 days after genetic ablation. This study provides a framework for understanding transcriptional changes during adult models of regeneration. Overall design: Examination of gene expression in cardiomyocytes under different states of proliferation.

Publication Title

Resolving Heart Regeneration by Replacement Histone Profiling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE88966
Depot dependent effects of dexamethasone on gene expression in human omental and abdominal subcutaneous adipose tissues from obese women.
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We used microarrays to identify transcripts regulated by dexamethasone in omental (Om) and abdominal subcutaneous (Abdsc) adipose tissues of severely obese females obtained during elective surgeries.

Publication Title

Depot Dependent Effects of Dexamethasone on Gene Expression in Human Omental and Abdominal Subcutaneous Adipose Tissues from Obese Women.

Sample Metadata Fields

Specimen part, Disease stage, Treatment

View Samples
accession-icon GSE75114
MicroRNA-offset RNA regulates gene expression and cell proliferation
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP134175
RNA-Seq gene expression regulated by Drosophila insulin-like peptides DILP2 and DILP5 in S2 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mammalian insulin and IGF induce similar but not identical changes in gene expression downstream of their respective receptors. Signaling bias at the receptor differentiates the two similar ligands, though the precise mechanism is not entirely understood. We used Drosophila insulin-like peptides DILP2 and DILP5 to determine how similar insulin-like ligands regulate similar and distinct patterns of gene expression in S2 cells by RNA-Seq. Overall, DILP2 and DILP5 stimulate many of the same changes in gene expression. However, some genes are uniquely regulated by DILP2 or by DILP5. Shared and distinct gene targets were validated by q-RT-PCR with indepedent replicates. Some unique gene targets of DILP2 are involved in sugar metabolism, which is functionally related in vivo to DILP2 and not DILP5. We find that gene expression is largely regulated in parallel by DILP2 and DILP5 but some key unique targets may lead to differential physiological functions for the two insulin-like genes. Overall design: mRNA profiles from S2 cells treated with DILP2, DILP5 or solvent were sequenced on an Illumina HiSeq2500

Publication Title

<i>Drosophila</i> Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact